Мегаобучалка Главная | О нас | Обратная связь


Основные геометрические и аэродинамические характеристики крыла конечного размаха



2016-01-05 6440 Обсуждений (0)
Основные геометрические и аэродинамические характеристики крыла конечного размаха 0.00 из 5.00 0 оценок




Полная аэродинамическая сила и ее проекции

 

При расчете основных летно-технических характеристик самолета, а также его устойчивости и управляемости необходимо знать силы и моменты, действующие на самолет.

Аэродинамические силы, действующие на поверхность самолета (давление и трение), можно привести к главному вектору аэродинамических сил , приложенному в центре давления (рис. 1), и паре сил, момент которых равен главному моменту аэродинамических сил относительно центра масс летательного аппарата.

Рис. 1. Полная аэродинамическая сила и ее проекции в двумерном (плоском) случае

Аэродинамическую силу обычно задают проекциями на оси скоростной системы координат (ГОСТ 20058-80). При этом проекцию на ось , взятую с обратным знаком, называют силой лобового сопротивления , проекцию на ось - аэродинамической подъемной силой , проекцию на ось - аэродинамической боковой силой . Эти силы могут быть выражены через безразмерные коэффициенты лобового сопротивления , подъемной силы и боковой силы , соответственно:

; ; ,

где - скоростной напор, Н/м2; - воздушная скорость, м/с; r - массовая плотность воздуха, кг/м3; S - площадь крыла самолета, м2. К основным аэродинамическим характеристикам относят также аэродинамическое качество

.

Аэродинамические характеристики крыла , , зависят от геометри­ческих параметров профиля и крыла, ориентации крыла в потоке (угла атаки a и скольжения b), параметров подобия (чисел Рейнольдса Re и Маха ),высоты полета H, а также от других параметров. Числа Маха и Рейнольдса являются безразмерными величинами и определяются выражениями

, , (2.12)

где a – скорость звука, n - кинематический коэффициент вязкости воздуха в м2/с, – характерный размер (как правило полагают , где – средняя аэродинамическая хорда крыла).Для определения аэродинамических характеристик самолета иногда исполь­зуются более простые, приближенные методы. Самолет рассматривается как совокупность отдельных частей: крыла, фюзеляжа, оперения, гондол двигателей и т.д. Определяются силы и моменты, действующие на каждую из отдельных частей. При этом используются известные результаты аналитических, численных и экспериментальных исследований. Силы и моменты, действующие на самолет, находятся как сумма соответствующих сил и моментов, действующих на каждую из его частей, с учетом их взаимного влияния.

Согласно предлагаемой методике, расчет аэродинамических харак­теристик крыла производится, если заданы некоторые геометрические и аэродинамические характеристики профиля крыла.

Выбор профиля крыла

Основные геометрические характеристики профиля задаются следующими параметрами. Хордой профиля называется отрезок прямой, соединенной две наиболее удаленные точки профиля. Хорда делит профиль на две части: верхнюю и нижнюю. Наибольший перпендикулярный хорде отрезок, заключенный между верхним и нижним обводами профиля, называется толщиной профиля c (рис. 2). Линия, соединяющая середины отрезков, перпендикулярных хорде и заключенных между верхним и нижним обводами профиля, называется средней линией. Наибольший перпендикулярный хорде отрезок, заключенный между хордой и средней линией профиля, называется кривизной профиля f. Если , то профиль называется симметричным.

Рис. 2. Профиль крыла

b - хорда профиля; c - толщина профиля; f - кривизна профиля; - координата максимальной толщины; - координата максимальной кривизны

Толщину c и кривизну профиля f, а также координаты и , как правило измеряют в относительных единицах , , , или в процентах , , , .

Выбор профиля крыла связан с удовлетворением различных требований, предъявляемых к самолету (обеспечение требуемой дальности полета, высокой топливной эффективности,крейсерской скорости , обеспечение безопасных условий взлета и посадки и др.). Так, для легких самолетов с упрощенной механизацией крыла следует обращать особое внимание на обеспечение максимального значения коэффициента подъемной силы, особенно на режиме взлета и посадки. Как правило, такие самолеты имеют крыло с большим значением относительной толщины профиля % = 12 ¸ 15%.

Для дальних самолетов с высокой дозвуковой скоростью полета, у которых увеличение на взлетно-посадочных режимах достигается благодаря механизации крыла, упор делается на достижение лучших характеристик на крейсерском режиме, в частности, на обеспечение режимов [1,2].

Для нескоростных самолетов выбор профилей производится из серии стандартных (обычных) профилей NACA или ЦАГИ, которые при необходи­мости могут быть модифицированы на этапе эскизного проектирования самолета.

Так, профили NACA с четырехзначными обозначениями могут быть использованы на легких тренировочных самолетах, а именно для концевых сечений крыла и хвостового оперения. Например, профили NACA2412 (относительная толщина % = 12%, координата максимальной толщины % = 30%, относительная кривизна % = 2%, координата максимальной кривизны % = 40%) и NACA4412 ( % = 12%, % = 30%, % = 4%, % = 40%) имеют достаточно высокое значение и плавные срывные характеристики в районе критического угла атаки .

Пятизначные профили NACA (серии 230) обладают наибольшей подъемной силой из всех стандартных серий, но их срывные характеристики менее благоприятны.

Профили NACA с шестизначным обозначением ("ламинарные") имеют низкое профильное сопротивление в узком диапазоне значений коэф­фициента . Эти профили очень чувствительны к шероховатости поверхности, загрязнениям, наростам [3].

Классические (обычные) профили, используемые на самолетах с малы­ми дозвуковыми скоростями, отличаются достаточно большими местными возмущениями (разряжениями) на верхней поверхности и, соответственно, небольшими значениями критического числа Маха . Критическое число Маха является важным параметром, определяющим величину лобового сопротивления самолета (при > на поверхности летательного аппарата появляются области местных сверхзвуковых течений и дополнительное волновое сопротивление).

Активный поиск путей повышения крейсерской скорости полета (без увеличения сопротивления самолета) привел к необходимости изыскать спо­собы дальнейшего повышения по сравнению с классическими скорост­ными профилями. Таким способом повышения является уменьшение кривизны верхней поверхности, что приводит к снижению возмущений на значительной части верхней поверхности. При малой искривленности верхней поверхности сверхкритического профиля уменьшается доля создаваемой им подъемной силы. Для компенсации этого явления производится подрезка хвостового участка профиля путем плавного изгиба его вниз (эффект "закрылка"). В связи с этим, средняя линия суперкритических профилей имеет харак­терный S - образный вид, с отгибом вниз хвостового участка. Для суперкритических профилей, как правило, характерно наличие отрицательной кривизны в носовой части профиля. В частности, на авиасалоне МАКС 2007 в экспозиции ОАО ²Туполев² был представлен макет самолета ТУ-204-100СМ с усеченным крылом, что позволяет получить представление о геометрических характеристиках профиля в корневой части крыла. Из представленного ниже фото (рис. 3.) видно наличие у профиля ²брюшка² и достаточно плоской верхней части, характерных для суперкритических профилей. Сверх­критические профили по сравнению с обычными скоростными профилями позволяют повысить примерно на = 0,05 ¸ 0,12 или увеличить тол­щину на % = 2,5 ¸ 5%. Применение утолщенных профилей позволяет увели­чить удлинение lкрыла на = 2,5 ¸ 3 или уменьшить угол стреловид­ности c крыла примерно на = 5 ¸ 10° при сохранении значения .

Рис. 3. Профиль крыла самолета ТУ-204-100СМ

Использование сверхкритических профилей в компоновке стреловид­ных крыльев является одним из основных направлений совершенствования аэродинамики современных транспортных и пассажирских самолетов [1].

Следует отметить, что при несомненном преимуществе сверхкритичес­ких профилей, по сравнению с обычными, некоторыми недостатками их яв­ляются повышение значения коэффициента момента на пикирование и тонкая хвостовая часть профиля.

 

Основные геометрические и аэродинамические характеристики крыла конечного размаха

В течение последних 30 ¸ 40 лет основным типом крыла для дозвуковых магистральных самолетов являлось стреловидное (c = 30 ¸ 35°) крыло с удли­нением , выполненное с сужением h =3 ¸ 4. Перспективные пас­сажирс­кие самолеты, представленные на авиасалоне ²МАКС - 2007² (Ту - 334, Sukhoy Superjet 100) имели удлинение . Прогресс в увеличении удлинения крыла достигнут, в основном, за счет использования композиционных материалов в конструкции крыла.

Рис. 4. Однопанельное крыло

Сечение крыла в плоскости симметрии называется корневым профилем, а его хорда - корневой; на концах крыла, соответственно, концевой профиль и концевая хорда . Расстояние от одного концевого профиля до другого называется размахом крыла . Хорда профиля крыла может изменяться вдоль его размаха. Отношение корневой хорды к концевой называется сужением крыла h. Отношение называется удлинением крыла. Здесь S - площадь проекции крыла на плоскость, перпендикулярную плоскости симметрии крыла и содержащую корневую хорду. Если по ходу полета концы отклонены относительно корневого сечения, говорят о стреловидности крыла. На рис. 4 показан угол между перпендикуляром к плоскости симметрии и передней кромкой крыла определяющий стреловидность по передней кромке. Говорят также об угле стреловидности по задней кромке, но важнее всего - угол (или просто c) стреловидностипо линии фокусов, т.е. по линии, соединяющий фокусы профилей крыла вдоль его размаха. При нулевой стреловидности по линии фокусов у крыла с ненулевым сужением кромки крыла не перпендикулярны плоскости симметрии крыла. Тем не менее, принято считать его прямым, а не стреловидным крылом. Если концы крыла отклонены относительно корневого сечения назад, то говорят о положительной стреловидности, если вперед - об отрицательной. Если передняя и задняя кромки крыла не имеют изломов, то стреловидность не меняется вдоль размаха. В противном случае, стреловидность может изменять свое значение и даже знак.

Современные стреловидные крылья с углом стреловидности c= 35° дозвуковых магистральных самолетов, рассчи­танных на крейсерские скорости, соответствующие = 0,83 ¸ 0,85, имеют среднюю относи­тельную толщину крыла % = 10 ¸ 11%, а сверхкрити­ческие крылья с углом стреловидности c = 28 ¸ 30° (для перспективных самолетов) около % = 11 ¸ 12%. Распределение толщины по размаху крыла определяется из условий реализации заданного полезного объема и минимального волнового сопротивления. С целью реализации эффекта скольжения в бортовых сече­ниях стреловидных крыльев применяют профили с "более передним" расположением точки максимальной толщины ,по сравнению с остальной частью крыла.

Геометрия крыла сложной формы (рис. 5) задается набором из n панелей, для каждой из которых известны , , , , , , , . Кроме того, для каждой из панелей задаются соответствующие аэродинамические характеристики профиля. От многопанельного крыла переходят к эквивалентному однопанельному крылу.

Площадь S эквивалентного однопанельного крыла определяется выражением , удлинение и сужение по формулам

, , где .

Остальные геометрические и аэродинамические параметры крыла и профиля определяются в соответствии с формулой

,

где - параметр панели, y - параметр крыла.

Например, относительная толщина эквивалентного однопанельного крыла определяется выражением ( ; ):

.

Рис. 5. Двухпанельное крыло

Если корневая и концевая хорды расположены не в одной плоскости, то крыло имеет геометрическую крутку (рис. 6), характеризующую углом j.

Рис. 6. Концевой и корневой профили крыла при наличии геометрической крутки

Исследования аэродинамических моделей самолетов показали, что применениесверхкритических профилей в сочетании с геометрической круткой позволяют обеспечить [1]. В данной работе использует­ся приближенная методика определения аэродинамических характеристик крыла, основанная на использовании экспериментальных данных. Расчет аэродинамических коэффициентов и крыла проводится в несколько этапов. Исходными данными для расчета являются некоторые геометрические и аэродинамические характеристики профиля. Эти данные могут быть взяты, в частности, из атласа профилей.

По результатам расчета аэродинамических коэффициентов строится зависимость и поляра - зависимость . Типичный вид этих зависимостей для малых дозвуковых скоростей представлен, соответственно, на рис. 7 и рис. 8.

Рис. 7. Зависимость Рис. 8. Поляра


2016-01-05 6440 Обсуждений (0)
Основные геометрические и аэродинамические характеристики крыла конечного размаха 0.00 из 5.00 0 оценок









Обсуждение в статье: Основные геометрические и аэродинамические характеристики крыла конечного размаха

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (6440)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)