Вычисление теоретических частот
Критерий Пирсона основан на сравнении эмпирических (опытных) частот с теоретическими. Эмпирические частоты nI определяются по фактическим результатам наблюдений. Теоретические частоты, обозначаемые далее
где n – количество испытаний, а pi º R (zi –1 < x < zi) - теоретическая вероятность попадания значений случайной величины в i-й промежуток (1 £ i £ 1).Теоретические вероятности вычисляются в условиях выдвинутой гипотезы о законе распределения изучаемой случайной величины. В данном варианте принята гипотеза о показательном распределении случайной величины. В этом случае теоретическая вероятность pi при любом i вычисляется по одной из следующих трех формул (в зависимости от взаимного расположения i-ого промежутка и числа х0 ):
zi-1 zi x0
zi-1 x0 zi
x0 zi-1 zi
Процедура отыскания теоретических вероятностей и частот показана в расчетной таблице: n = 150;
å: 1 150
5.3 Статистика c2 и вычисление ее значения по опытным данным. Для того чтобы принять или отвергнуть гипотезу о законе распределения изучаемой случайной величины, в каждом из критериев согласия рассматривается некоторая (специальным образом подбираемая) величина, характеризующая степень расхождения теоретического (предполагаемого) и статистического распределения. В критерии Пирсона в качестве такой меры расхождения используется величина
называемая статистикой «хи - квадрат» или статистикой Пирсона (вообще, статистикой называют любую функцию от результатов наблюдений). Ясно, что всегда c2 ³0, причем c2 = 0, тогда и только тогда, когда
Прежде чем рассказать о применении статистики c2 к проверке гипотезы о закон е распределения , вычислим ее значение для данного варианта; это значение, найденное по данным наблюдений и в рамках выдвинутой гипотезы, будем обозначать через c2набл..
c2набл. =72,802
5.4. Распределение статистики c2. Случайная величина имеет c2 – распределение с r степенями свободы (r = 1; 2; 3; …), если ее плотность имеет вид
где cr – которая положительная постоянная ( cr определяется из равенства Вернемся теперь к статистике
Если в качестве предполагаемого выбрано одно их трех основных непрерывных распределений (нормальное, показательное или равномерное), то r = i – 3, где i – количество промежутков, на которые разбита числовая ось (количество групп опытных данных). В общем случае где Т.е. в данном варианте после группировки исходных данных получаем количество промежутков разбиения i = 10, Следовательно r = i-
Популярное: Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1063)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |