Мегаобучалка Главная | О нас | Обратная связь


Изменения при физических нагрузках



2016-01-02 8323 Обсуждений (0)
Изменения при физических нагрузках 0.00 из 5.00 0 оценок




Наше сердце всегда первым откликается на потребности организма: будь то физические нагрузки, подъем в горы, воздействие эмоций или других факторов. Так, при средней продолжительности жизни человека в 70 лет оно сокращается свыше 2,5 миллиардов раз. За это время перекачивается огромное количество крови, для перевозки которой потребовался бы состав из 4 000 000 вагонов. И эта работа выполняется органом, масса которого 250 г (у женщин) и немногим больше 300 г (у мужчин).

У людей, занимающихся спортом, сердце в состоянии напряжения может работать с частотой свыше 200 сокращений в минуту и при этом обладать удивительной выносливостью. В это время увеличивается сила и скорость сокращений сердца, а через его сосуды проходит крови в 4-5 раз больше, чем в состоянии покоя . Мышца сердца при этом не испытывает дефицита питательных веществ и кислорода. Однако нетренированным людям стоит только немного пробежаться, как у них появляется сердцебиение и одышка. Почему это происходит? Давайте попробуем разобраться и решить для себя: действительно ли так важны для нашего организма занятия спортом.

В организме взрослого человека содержится 5-6 л крови. В состоянии покоя 40-50% ее не циркулирует, находясь в гак называемом депо (селезенка, кожа, печень). При мышечной работе увеличивается количество циркулирующей крови (за счет выхода из "депо"). Происходит ее перераспределение в организме: большая часть крови устремляется к активно работающим органам: скелетным мышцам, сердцу, легким. Изменения в составе крови направлены на удовлетворение возросшей потребности организма в кислороде. В результате увеличения количества эритроцитов и гемоглобина повышается кислородная емкость крови, т.е. увеличивается количество кислорода, переносимого в 100 мл крови. При занятиях спортом увеличивается масса крови, повышается количество гемоглобина (на 1-3%), увеличивается число эритроцитов (на 0,5-1 млн в кубическом миллиметре), возрастает количество лейкоцитов и их активность, что повышает сопротивляемость организма к простудным и инфекционным заболеваниям. В результате мышечной деятельности активизируется система свертывания крови. Это одно из проявлений срочной адаптации организма к воздействию физических нагрузок и возможным травмам с последующим кровотечением. Программируя "с опережением" такую ситуацию, организм повышает защитную функцию системы свертывания крови.

Двигательная деятельность оказывает существенное влияние на развитие и состояние всей системы кровообращения. В первую очередь изменяется само сердце: увеличиваются масса сердечной мышцы и размеры сердца. У тренированных людей масса сердца составляет в среднем 500 г, у нетренированных - 300.

Сердце человека чрезвычайно легко поддается тренировке и как ни один другой орган нуждается в ней. Активная мышечная деятельность способствует гипертрофии сердечной мышцы и увеличению полостей сердца. Объем сердца у спортсменов больше на 30%, чем у людей, не занимающихся спортом. Увеличение объема сердца, особенно его левого желудочка, сопровождается повышением его сократительной способности, увеличением систолического и минутного объемов.

Физическая нагрузка способствует изменению деятельности не только сердца, но и кровеносных сосудов. Активная двигательная деятельность вызывает расширение кровеносных сосудов, снижение тонуса их стенок, повышение их эластичности. При физических нагрузках почти полностью раскрывается микроскопическая капиллярная сеть, которая в покое задействована всего на 30-40%. Все это позволяет существенно ускорить кровоток и, следовательно, увеличить поступление питательных веществ и кислорода во все клетки и ткани организма.

Работа сердца характеризуется непрерывной сменой сокращений и расслаблений его мышечных волокон. Сокращение сердца называется систолой, расслабление - диастолой. Количество сокращений сердца за одну минуту - частота сердечных сокращений (ЧСС). В состоянии покоя у здоровых нетренированных людей ЧСС находится в пределах 60-80 уд/мин, у спортсменов - 45-55 уд/мин и ниже. Урежение ЧСС в результате систематических занятий физическими упражнениями называется брадикардией. Брадикардия препятствует "изнашиванию" миокарда и имеет важное оздоровительное значение. На протяжении суток, в течение которых не было тренировок и соревнований, сумма суточного пульса у спортсменов на 15-20% меньше, чем у лиц того же иола и возраста, не занимающихся спортом.

Мышечная деятельность вызывает учащение сердцебиения. При напряженной мышечной работе ЧСС может достигать 180-215 уд/мин. Увеличение ЧСС имеет прямо пропорциональную зависимость от мощности мышечной работы. Чем больше мощность работы, тем выше показатели ЧСС. Тем не менее при одинаковой мощности мышечной работы ЧСС у менее подготовленных лиц значительно выше. Кроме того, при выполнении любой двигательной деятельности ЧСС изменяется в зависимости от пола, возраста, самочувствия, условий занятий (температура, влажность воздуха, время суток и т.д.).

При каждом сокращении сердца кровь выбрасывается в артерии под большим давлением. В результате сопротивления кровеносных сосудов ее передвижение в них создается давлением, называемое кровяным давлением. Наибольшее давление в артериях называют систолическим, или максимальным, наименьшее - диастолическим, или минимальным. В состоянии покоя у взрослых людей систолическое давление составляет 100-130 мм рт. ст., диастолическое - 60-80 мм рт. ст. По данным Всемирной организации здравоохранения, артериальное давление до 140/90 мм рг. ст. является нормотоническим, выше этих величин - гипертоническим, а ниже 100-60 мм рт. ст. - гипотоническим. В процессе выполнения физических упражнений, а также после окончания тренировки артериальное давление обычно повышается. Степень его повышения зависит от мощности выполненной физической нагрузки и уровня тренированности человека. Диастолическое давление изменяется менее выражено, чем систолическое. После длительной и очень напряженной деятельности (например, участие в марафоне) диастолическое давление (в некоторых случаях и систолическое) может быть меньше, чем до выполнения мышечной работы. Это обусловлено расширением сосудов в работающих мышцах.

Важными показателями производительности сердца являются систолический и минутный объем. Систолический объем крови (ударный объем) - это количество крови, выбрасываемой правым и левым желудочками при каждом сокращении сердца. Систолический объем в покое у тренированных - 70-80 мл, у нетренированных - 50-70 мл. Наибольший систолический объем наблюдается при ЧСС 130-180 уд/мин. При ЧСС свыше 180 уд/мин он сильно снижается. Поэтому наилучшие возможности для тренировки сердца имеют физические нагрузки в режиме 130-

180 уд/мин. Минутный объем крови (МОК) - количество крови, выбрасываемое сердцем за одну минуту, зависит от ЧСС и систолического объема крови. В состоянии покоя МОК составляет в среднем 5-6 л, при легкой мышечной работе увеличивается до 10-15 л, при напряженной физической работе у спортсменов может достигать 42 л и более. Увеличение МОК при мышечной деятельности обеспечивает повышенную потребность органов и тканей в кровоснабжении.

Физические нагрузки представляют собой наиболее типичные, хотя и сопряженные с определенными затратами, состояния, к которым приходится адаптироваться сердечно-сосудистой системе. Специфические изменения, возникающие в деятельности сердечно-сосудистой системы во время физических нагрузок, определяются следующими факторами:

· типом нагрузки, т е является ли она преимущественно «динамической» (ритмической или изотонической) или «статической»(изометрической),

· интенсивностью и длительностью нагрузки,

· возрастом индивидуума и

· уровнем «тренированности» субъекта

На примере, который мы видим на рис. 11-4, представлены типичные изменения деятельности сердечно-сосудистой системы, которые могут произойти у нормального взрослого нетренированного человека при физической нагрузке динамического типа, такой как бег или танец. Особо обратите внимание, что частота сердечных сокращений и минутный объем существенно возрастают во время физической нагрузки и среднее артериальное давление и пульсовое давление также значительно увеличиваются Такие изменения убеждают, что увеличение метаболических потребностей работающей скелетной мышцы удовлетворяется соответствующим увеличением кровотока в ней.

Многие из приспособительных реакций, связанных с физической нагрузкой, обусловлены повышенной симпатической активностью, которая является результатом механизмов, представленных на рис. 11-5.

Одно из первичных изменений, связанных со стрессом и (или) ожиданием начала физической нагрузки, возникает в коре головного мозга и оказывает воздействие на сосудодвигательный центр продолговатого мозга через кортико-гипоталамические проводящие пути. Такое воздействие, повышающее установочную точку, называемое «центральной командой», влияет на нервную часть артериальной барорецепторной системы и вызывает регуляцию среднего артериального давления на более высоком уровне, чем в норме. Также на рис. 11-5 указано, что вторичное воздействие, повышающее установочную точку, может поступать в сосудодвигательный центр от хеморецепторов, расположенных в активно работающих скелетных мышцах. Такая импульсация также вносит свой вклад в повышение симпатической активности и уровня среднего артериального давления при физической нагрузке.
Существенным изменением в сердечно-сосудистой системе при динамической нагрузке в то же время является значительное снижение общего периферического сопротивления, вызванного накоплением метаболических вазодилататоров и снижением сосудистого сопротивления в активно работающей скелетной мускулатуре. Снижение общего периферического сопротивления представ-ляет собой фактор, снижающий давление, который стимулирует увеличение симпатической активности посредством артериального барорецепторного рефлекса.
Хотя среднее артериальное давление во время физической нагрузки выше нормы, однако снижение общего периферического сопротивления приводит к его падению ниже этого повышенного уровня, на котором оно должно было бы регулироваться в результате только воздействий на сосудодвигательный центр, направленных на подъем установочной точки. Артериальная барорецепторная дуга реагирует на данное обстоятельство увеличением симпатической активности. Таким образом, артериальный барорецепторный рефлекс в значительной степени обусловливает увеличение симпатической активности при физической нагрузке, несмотря на казалось бы противоречащий этому факт повышения уровня артериального давления по сравнению с нормой. Фактически, если бы не артериальный барорецепторный рефлекс, то снижение общего периферического сопротивления, происходящее во время физической нагрузки, вызвало бы падение среднего артериального давления существенно ниже нормы.
Кровоток в коже может увеличиться при нагрузке, несмотря на общее увеличение тонуса симпатических сосудосуживающих нервов, поскольку термические рефлексы могут подавлять прессорные рефлексы при регуляции кровотока в коже в определенных условиях. Температурные рефлексы обычно, конечно, активируются во время усиленной физической нагрузки, чтобы устранить избыток тепла, который возникает во время активной работы скелетной мускулатуры. Часто кровоток в коже снижается в начале нагрузки (как часть общего увеличения тонуса артериол в результате увеличения активности симпатических сосудосуживающих нервов), а затем возрастает при ее продолжении по мере того, как нарастает теплопродукция и температура тела.
Помимо увеличения кровотока в скелетной мускулатуре и коже, при тяжелой физической нагрузке также существенно возрастает коронарный кровоток. Это прежде всего обусловлено локальной метаболической вазодилатацией коронарных артериол, вследствие усиления работы сердца и увеличения потребления кислорода миокардом.
На рис. 11 -5 не показано два важных механизма, участвующих в реакции сердечно-сосудистой системы на динамическую физическую нагрузку. Первый — это насос скелетной мускулатуры, который мы обсуждали в связи с вертикальным положением тела. Насос скелетной мускулатуры является очень важным фактором усиления венозного возврата при физической нагрузке и таким образом предупреждает чрезмерное снижение центрального венозного давления вследствие увеличения частоты сердечных сокращений и сократительной способности миокарда. Второй фактор — это дыхательный насос, который также способствует венозному возврату при физической нагрузке. Усиление дыхательных движений во время физической нагрузки ведет к увеличению эффективности деятельности дыхательного насоса и, тем самым, способствует повышению венозного возврата и наполнения сердца.
Средняя величина центрального венозного давления при значительной динамической физической нагрузке изменяется несущественно, или вообще не меняется. Это происходит, потому что обе кривые минутного объема и венозного возврата сдвигаются кверху при физической нагрузке. Таким образом, минутный объем и венозный возврат увеличиваются без значительных изменений центрального венозного давления.

В целом, значительные адаптационные изменения деятельности сердечно-сосудистой системы при динамической физической нагрузке, происходят автоматически, вследствие работы нормальных механизмов регуляции! деятельности сердечно-сосудистой системы. Колоссальное увеличение кровотока в скелетной мускулатуре осуществляется преимущественно за счет увеличения минутного объема сердца, но частично это также осуществляется за счет уменьшения кровотока в почках и органах брюшной полости.

При статической (т.е. изометрической) физической нагрузке в сердечно-сосудистой системе возникают изменения, отличные от изменений при динамической нагрузке. Как обсуждалось в предыдущем разделе, динамическая нагрузка приводит к существенному уменьшению общего периферического сопротивления, вследствие локальной метаболической вазодилатации в работающих мышцах. Статическое напряжение, даже умеренной интенсивности, вызывают сдавление сосудов в сокращающихся мышцах и снижение объемного кровотока в них. Таким образом, общее периферическое сопротивление обычно не снижается при статической физической нагрузке и может даже существенно увеличиться, если в работу вовлечены некоторые крупные мышцы. Первичные изменения в деятельности сердечно-сосудистой системы во время статической нагрузки представляют собой повышающие установочную точку потоки импульсов в сосудодвигательный центр продолговатого мозга из коры головного мозга (центральная команда) и от хеморецепторов в сокращающихся мышцах.
Воздействие на сердечно-сосудистую систему статической нагрузки приводит к увеличению частоты сердечных сокращений, минутного объема и артериального давления — все это является результатом усиления активности симпатических центров. Статическая нагрузка в то же время приводят к меньшему увеличению частоты сердечных сокращений и минутного объема и большему увеличению диастолического, систолического и среднего артериального давления, чем это происходит при динамической физической нагрузке.
Длительность периода восстановления различных параметров деятельности сердечно-сосудистой системы после физической нагрузки зависит от многих факторов, в том числе от типа, длительности и интенсивности нагрузки, а также и от общей тренированности человека. Мышечный кровоток в норме возвращается к величине состояния покоя через несколько минут после динамической нагрузки. В то же время, если сужение артерий препятствует возникновению нормальной активной гиперемии во время динамической физической нагрузки, то восстановление исходного уровня займет гораздо больше времени, чем в норме. После изометрической физической нагрузки мышечный кровоток часто возрастает почти до максимального, прежде чем вернуться к норме на протяжении времени, которое варьирует в зависимости от длительности и интенсивности физических усилий. Частично увеличение мышечного кровотока после изометрической физической нагрузки можно классифицировать как реактивную гиперемию в ответ на снижение кровотока, вызванное сдавливающими силами в мышцах во время физической нагрузки.

6. Мышечный насос

Как известно, сердце перекачивает всю кровь, которая к нему поступает. Поэтому сердечный выброс прямым образом зависит от объема крови, возвращающегося к правому сердцу через системные венозные сосуды, или, другими словами, от венозного возврата. В увеличении венозного возврата при мышечной работе участвуют несколько механизмов (насосов): 1-й – перераспределение объема венозной крови (венозный насос); 2-й – сокращение мышц (мышечный насос), 3-й – усиление дыхания (дыхательный насос).

Перераспределение объема венозной крови при мышечной работе достигается в результате сокращения мышечных стенок вен, что уменьшает емкость венозной системы (венозного депо) и как результат усиливает ток крови к сердцу (венозный насос). При мышечной работе происходит усиление симпатического разряда, пропорциональное мощности выполняемой работы. В ответ возникает сокращение гладкомышечных элементов емкостных венозных сосудов. Это повышает «жесткость» стенок и уменьшает их просвет, обеспечивая «выталкивание» венозной крови по направлению к сердцу. Таким образом, происходит перераспределение объема циркулирующей крови: объем крови, находящийся ранее в венозной части сосудистой системы, уменьшается, а центральный объем крови (в легочном круге и сердце) увеличивается. Соответственно повышается и венозный возврат. «Излишний» объем крови перемещается в сосудистое русло работающих мышц, объем которого резко возрастает в результате раскрытия капиллярной сети.

Мышечный насос служит одним из наиболее важных механизмов, усиливающих венозный возврат при работе. При сокращении мышц происходит механическое сжатие мышечных вен и кровь из них выдавливается по направлению к сердцу. При расслаблении мышц венозное давление падает, артериовенозная разность давления возрастает и кровь быстро заполняет мышечные вены. Кроме того, в эти вены течет кровь и из связанных с ними поверхностных вен. Обратному движению крови из глубоких в поверхностные вены препятствуют клапаны, которыми снабжены эти вены. Чем сильнее и чаще мышечные сокращения и чем больше вовлекаемая в динамическую работу мышечная масса, тем эффективнее деятельность мышечного насоса.

Особенно важна деятельность мышечного насоса в начале работы при вертикальном положении тела, когда он обеспечивает немедленное усиление венозного возврата и, следовательно, быстрое увеличение сердечного выброса. Особая ситуация для кровообращения возникает в процессе натуживания, например при поднимании большого веса (штанги), когда после максимального вдоха происходит усиленный выдох при закрытой голосовой щели (феномен Вальсалвы). Возникающее при этом сильное повышение внутригрудного давления задерживает венозный приток и может вызвать кратковременное уменьшение сердечного выброса. В крайних случаях длительной задержки выдоха венозный возврат уменьшается настолько, что происходит падение АД, которое может вести к нарушению кровообращения и потере сознания.

При первом сокращении активных мышц вены в них сжимаются, что немедленно приводит к увеличению притока крови к правому желудочку (мышечному насосу); это особенно важно во время нагрузки в вертикальном положении.
Увеличение оттока венозной крови из мышц нижних конечностей способствует быстрому заполнению сердца и, кроме того, повышает давление перфузии в нижних конечностях за счет снижения давления в венах голени и ступни.
Активация мышечного насоса сопровождается изменениями в посткапиллярных сосудах (в основном в венах) системного кровообращения. Часто утверждают, что в системных венах содержится от 65 до 75% общего объема крови. Эти цифры представляют собой интуитивные догадки, поскольку в действительности метода для точного определения этого объема в настоящее время нет.
Посткапиллярные сосуды различных областей системного сосудистого русла, возможно, действуют как однородная часть общей резервуарной системы (Shepherd, 1966). В этой системе благодаря ее вязкоэластическим свойствам могут наблюдаться значительные пассивные изменения объема при небольших колебаниях трансмурального давления.
Кроме того, благодаря наличию в стенках сосудов гладких мышц, эта система может активно изменять свой объем и соответственно внутрисосудистое давление. Если ранее некоторые части этой системы, например селезенка, печень и кожа, рассматривались как специфические депо крови, они, являясь компонентами общей системы, самостоятельно не функционируют.
Простое перемещение крови, т. е. высвобождение ее из одной части венозной системы в другую, почти не играет роли. Таким образом, гладкие мышцы в стенках вен в противоположность артериолам почти не подвергаются воздействию местных регуляторных механизмов. Активные изменения напряжения сосудистых стенок осуществляются посредством центрального интегрированного нервного механизма, который имеет эфферентный путь, состоящий из симпатических адренергических нервных волокон.

При малоподвижном образе жизни венозная кровь застаиваться (например в брюшной полости или в области таза при длительном сидении). Вот почему движению крови по венам способствует деятельность окружающих их мышц (мышечный насос).Сокращаясь и расслабляясь, мышцы то сдавливают вены, то прекращают этот процесс, давая им расправиться и тем самым способствуют продвижения крови по направлению к сердцу, в сторону пониженного давления, так как движению крови в противоположную от сердца сторону препятствуют клапаны, имеющиеся в венозных сосудах. Чем чаще и активнее сокращаются и расслабляются мышцы, тем большую помощь сердцу оказывает мышечный насос. Особенно эффективно он работает при локомоциях (ходьбе, гладком беге, беге на лыжах, на коньках, при плавании и т.п.). Мышечный насос способствует более быстрому отдыху сердца и после интенсивной физической нагрузки.

7. Гравитационный шок

Гравитационный шок (ОРТОСТАТИЧЕСКИЙ КОЛЛАПС)— остро развивающееся патологическое состояние, вызванное расстройством сосудистой регуляции. Гравитационный шок при несоблюдении мер профилактики наступает чаще всего после бега на различные дистанции (чаще средние), реже после езды на велосипеде, лыжной гонки, спортивной ходьбы И Т. П.;

Проявления его очень характерны. Остановившийся сразу после финиша спортсмен внезапно ощущает появление быстро нарастающей слабости, головокружения, тошноты, за которыми следует потеря сознания. Характерна резкая бледность.

Болгарский физиолог Матеев показал, что названное им «гравитационным шоком» состояние обусловлено остро наступающей сосудистой недостаточностью. Во время бега, езды на велосипеде и т. п. в мышцах нижних конечностей во много раз увеличивается число функционирующих капилляров. Количество циркулирующей в них крови резко возрастает. Благодаря ритмическому сокращению и расслаблению мышц вступает в действие «мышечный насос», который способствует быстрому перемещению крови из капилляров в мелкие, а затем в крупные вены и в правое предсердие. В значительной мере этому способствует п присасывающее действие грудной клетки. Внезапное прекращение бега и неподвижное стояние приводят к выключению нагнетательной деятельности мышечного насоса. Происходит задержка крови в капиллярах и венах нижних конечностей. Количество циркулирующей крови резко уменьшается.

 

Рис. 7. Изменения кровяного давления а пульса при гравитационном шоке (по Д. Мхтгеьу).

Компенсация недостатка циркулирующей крови и резкого падения кровяного давления за счет учащений сердцебиений не приводят к положительным результатам. В первую очередь от этого страдает центральная нервная система. Наступает анемия .головного мозга и развивается потеря сознания.

Матеев в эксперименте подтвердил эти положения. Производя немедленное после бега бинтование ног эластическими бинтами, ш не допускал развития гравитационного шока; снятие бинтов приводило к появлению типичной картины этого состояния. » ‘

Профилактикой гравитационного шока является запрещение остановок и постепенный переход после пересечения линии финиша от быстрого передвижения к более медленному, при одновременном углублении дыхания, и допуск к участию в соревнованиях, особенно в беге на средние и длинные дистанции, только после достаточной тренировки.

При оказании первой помощи пострадавшему следует придать положение лежа с несколько опущенной ниже туловища головой и приподнятыми ногами. Обычно этого бывает достаточно. Сознание скоро возвращается. Появляется и быстро выравнивается пульс. Через несколько минут общее состояние настолько улучшается, что пострадавший самостоятельно поднимается, чувствуя лишь небольшую слабость, а иногда легкую тошноту и головокружение. Если сознание не возвращается, следует, налив несколько капель нашатырного спирта на кусочек ваты или платок, поднести их к носу пострадавшего. В редких, единичных случаях приходится применять искусственное дыхание.

К лекарственной терапии, как правило, прибегать нет необходимости.

 

 

8.Источники:

  • https://ru.wikipedia.org/wiki/Сердечно-сосудистая_система
  • http://www.podari-zhizn.ru/main/node/6984
  • http://www.eurolab.ua/anatomy/system/cardiovascular/
  • http://www.kardio.ru/profi_1/index_2_1.htm#1
  • http://www.medkurs.ru/lecture1k/histology/qh20/2763.html
  • http://www.karina-kazak.narod.ru/phisiol/base_content/sss/serdce_9.html
  • http://studme.org/180602034082/meditsina/funktsionalnye_izmeneniya_organizme_pri_fizicheskih_nagruzkah
  • http://www.cardio-portal.ru/fiziolog/2_22.html
  • http://www.serdechno.ru/funkciya_serdca_u_zdorovyh_i_bolnyh/funkciya_serdca_pri_fizicheskoy_nagruzke/8423.html
  • http://www.healdisease.ru/htns-945-1.html
  • http://travmi-sport.ru/gravitacionnyj-shok/

 

 



2016-01-02 8323 Обсуждений (0)
Изменения при физических нагрузках 0.00 из 5.00 0 оценок









Обсуждение в статье: Изменения при физических нагрузках

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (8323)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.015 сек.)