Основные методы вычисления пределов
Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:
Готово. Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию. Пример с бесконечностью:
Разбираемся, что такое А что в это время происходит с функцией
Итак: если
Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию Еще один пример с бесконечностью:
Опять начинаем увеличивать
Вывод: при
И еще серия примеров: Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:
Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться. В том случае, если
Примечание: строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.
Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: Что нужно запомнить и понять из вышесказанного? Когда дан любой предел, сначала просто пытаемся подставить число в функцию. 2) Вы должны понимать и сразу решать простейшие пределы, такие как Более того, у предела есть очень хороший геометрический смысл. Для лучшего понимания темы рекомендую ознакомиться с методическим материалом Графики и свойства элементарных функций. После прочтения этой статьи вы не только окончательно поймете, что такое предел, но и познакомитесь с очень интересными случаями, когда предела функции вообще не существует! На практике, к сожалению, подарков немного. А поэтому переходим к рассмотрению более сложных пределов. 6.1.1. Пределы с неопределенностью вида Сейчас мы рассмотрим группу пределов, когда Пример 1 Вычислить предел Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида Как решать пределы данного типа? Сначала мы смотрим на числитель и находим
Старшая степень в числителе равна двум. Теперь смотрим на знаменатель и тоже находим
Старшая степень знаменателя равна двум. Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке. Итак, метод решения следующий: для того, чтобы раскрыть неопределенность
Разделим числитель и знаменатель на Вот оно как, ответ
Популярное: Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (3793)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |