Оценка случайных погрешностей прямых равноточных измерений
Случайные погрешности проявляются при многократных наблюдениях измеряемой величины в одинаковых условиях. Их влияние на результат измерения надо учитывать и стремиться по возможности уменьшать. К оценкам случайной величины, получаемым по статистическим данным, предъявляются требования состоятельности, несмещенности и эффективности. Оценка параметра Q считается состоятельной, если Q(Q1, Q2, .... Qn)→Qист, при п→∞, несмещенной, если М[Q]=Qист, эффективной, если D[Q]=min. Здесь Qi–результат i-ro наблюдения, п – число наблюдений. Способы нахождения оценок конечного ряда наблюдений и показатели их качества зависят от законов распределения. Для нормального распределения, а если поступиться эффективностью оценки, то и для всех симметричных распределений, в качестве оценки математического ожидания ряда равноточных наблюдений принимают среднее арифметическое ряда наблюдений. При п→∞, если отсутствует систематическая погрешность, Q→Qист. Разность vi=Qi– Среднее арифметическое независимо от закона распределения обладает свойствами:
В качестве оценки дисперсии берется дисперсия отклонения результата наблюдения а в качестве оценки СКО результата наблюдения – Среднее арифметическое зависит от числа наблюдений и является случайной величиной, которая обладает некоторой дисперсией относительно истинного значения величины Qист. Оценкой дисперсии среднего арифметического ряда наблюдений относительно истинного значения является Величина Таким образом, взяв за результат измерения Измерения с многократными наблюдениями и соответствующая обработка результатов позволяют уменьшить случайную погрешность и оценить ее. Оценки В отличие от точечной при интервальной оценке определяется доверительный интервал eр, в котором с доверительной вероятностью Р находится истинное значение Qист При заданной вероятности Р и вычисленной Если число измерений n<20, то доверительный интервал случайной погрешности при заданных вероятности Р и СКО результата измерения
где При n³20 распределение Стьюдента приближается к нормальному, и вместо Остановимся на способе исключения из результатов измерения промахов и грубых погрешностей. Если в полученной группе результатов наблюдений одно-два резко отличаются от остальных, то, прежде всего, следует проверить, нет ли описки, ошибки в снятии показаний или других промахов. Если промахи не установлены, то следует проверить, не являются ли они грубыми погрешностями. Эта задача решается статистическими методами, основанными на том, что распределение, к которому относится выборка, можно считать нормальным. Поскольку погрешности измерений определяют лишь зону недостоверности результата, их не требуется знать очень точно. Погрешности оценок случайных погрешностей, особенно при малом числе измерений (n£10), весьма велики. Поэтому погрешности измерения в окончательной записи принято выражать числом с одной или двумя значащими цифрами. При промежуточных выкладках в числовых значениях погрешности необходимо удерживать по три-четыре значащих цифры, чтобы погрешности округления не искажали результат измерения.
Популярное: Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1487)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |