Классификация по степени однородности
По степени однородности различают однородные (гомогенные) и неоднородные (гетерогенные) вычислительные системы. Обычно при этом имеется в виду тип используемых процессоров. В однородных вычислительных системах (гомогенных вычислительных системах) используются одинаковые процессоры, в неоднородных вычислительных системах (гетерогенных вычислительных системах) – процессоры различных типов. Вычислительная система, содержащая какой-либо специализированный вычислитель (например, Фурье-процессор), относится к классу неоднородных вычислительных систем. В настоящее время большинство высокопроизводительных систем относятся к классу однородных систем с общей памятью или к классу однородных систем с распределенной памятью. Рассмотренные классификационные признаки параллельных вычислительных систем не исчерпывают всех возможных их характеристик. Существует, например, еще разделение систем по степени согласованности режимов работы (синхронные и асинхронные вычислительные системы), по способу обработки (с пословной обработкой и ассоциативные вычислительные системы), по жесткости структуры (системы с фиксированной структурой и системы с перестраиваемой структурой), по управляющему потоку (системы потока команд -instruction flow и системы потока данных — data flow) и т.п. Современные высокопроизводительные системы имеют, как правило, иерархическую структуру. Например, на верхнем уровне иерархии система относится к классу MIMD, каждый процессор которой представляет собой систему MIMD или систему SIMD. Отметим также тенденцию к построению распределенных систем с программируемой структурой. В таких системах нет общего ресурса, отказ которого приводил бы к отказу системы в целом – средства управления, обработки и хранения информации распределены по составным частям системы. Такие системы обладают способностью автоматически реконфигурироваться в случае выхода из строя отдельных их частей. Средства реконфигурирования позволяют также программно перестроить систему с целью повышения эффективности решения на этой системе данной задачи или класса задач.
Векторно-конвейерные системы и векторно-параллельные (SIMD-системы) Векторно-конвейерные вычислительные системы. Векторно-конвейерные вычислительные системы относятся к классу SIMD-систем. Основные принципы, заложенные в архитектуру векторно-конвейерных систем: · конвейерная организация обработки потока команд; · введение в систему команд набора векторных операций, которые позволяют оперировать с целыми массивами данных. Длина обрабатываемых векторов в современных векторно-конвейерных системах составляет, как правило, 128 или 256 элементов. Основное назначение векторных операций состоит в распараллеливании выполнения операторов цикла, в которых обычно сосредоточена большая часть вычислительной работы. Первый векторно-конвейерный компьютер Cray-1 появился в 1976 году. Архитектура этого компьютера оказалась настолько удачной, что он положил начало целому семейству компьютеров. Современные векторно-конвейерные системы имеют иерархическую структуру: · на нижнем уровне иерархии расположены конвейеры операций (например, конвейер (pipeline) сложения вещественных чисел, конвейер умножения таких же чисел и т.п.); · некоторая совокупность конвейеров операций объединяется в конвейерное функциональное устройство; · векторно-конвейерный процессор содержит ряд конвейерных функциональных устройств; · несколько векторно-конвейерных процессоров (2-16), объединенных общей памятью, образуют вычислительный узел; · несколько таких узлов объединяются с помощью коммутаторов, образуя либо NUMA-систему либо MPP-систему. Типичными представителями такой архитектуры являются компьютеры CRAY J90/T90, CRAY SV1, NEC SX-4/SX-5. Уровень развития микроэлектронных технологий не позволяет в настоящее время производить однокристальные векторно-конвейерные процессоры, поэтому эти системы довольно громоздки и чрезвычайно дороги. Каждая часть конвейера операций называется ступенью конвейера операций, а общее число ступеней - длиной конвейера операций. Пример 1 Рассмотрим следующий 4-х ступенчатый конвейер операций сложения вещественных чисел Таблица 1
Положим, что выполняется сложение двух -векторов вещественных чисел . Диаграмма сложения этих векторов приведена на рис. 1 Рис. 1. К примеру 1. Временная диаграмма сложения (n*1)-векторов вещественных чисел X ,Y на 4-х ступенчатом конвейере операции сложения. В векторно-конвейерных системах в рамках одного конвейерного функционального устройства широко используется (т.е. аппаратно поддерживается) зацепление конвейеров операций. Покажем суть этой процедуры на примере. Пример 2 Положим, что в некоторой прикладной программе, исполняемой на векторно-конвейерной системе , необходимо вычислить
где - -векторы вещественных чисел, под произведением и делением векторов понимается их покомпонентное умножение и деление, соответственно. Иными словами, операции, указанные в выражении (1), понимаются в смысле
Положим также, что конвейерное функциональное устройство данной векторно-конвейерной системы имеет следующие конвейеры операций: · конвейер сложения вещественных чисел; · конвейер умножения вещественных чисел; · конвейер деления вещественных чисел Тогда для повышения скорости вычисления компонент вектора E целесообразно использовать зацепление указанных конвейеров (см. рис. 2). В результате, можно сказать, получается новый конвейер, который выполняет сложную операцию (2) Рис. 2. К примеру 2. К зацеплению конвейеров. Конвейер операций не следует путать с конвейером команд, в котором при исполнении одной команды готовится к исполнению несколько следующих команд. Так же, как в конвейере операций каждая часть конвейера команд называется ступенью конвейера команд, а общее число ступеней – длиной конвейера команд. Конвейеры команд широко используются в современных процессорах. Так процессор Intel 486 имеет 5-ти ступенчатый конвейер выполнения целочисленных команд, ступенями которого являются следующие операции: · предвыборка (команда извлекается из КЭШ-памяти и размещается в одном из двух 16-байтовых буферах); · декодирование; · генерация адреса; · исполнение в АЛУ; · запись результата в КЭШ-память. Процессор Pentium 2 (суперскалярная архитектура) имеет два 8-ми ступенчатых конвейера целочисленных команд. Кроме конвейеров в векторно-конвейерных системах для ускорения работы используют различные механизмы адресации, операции с автоинкрементом (автодекрементом) адреса, механизмы ускоренной выборки и записи (многопортовая память, память с расслоением и т.д.), отдельное адресное обрабатывающее устройство, отдельное скалярное устройство для выполнения скалярных операций и пр.. Недостатком векторно-конвейерных систем является невысокая загрузка процессорных элементов. Высокая производительность достигается только на операциях с длинными векторами. На скалярных операциях и при обработке векторов и матриц невысокой размерности значительная часть устройств может простаивать. В целом, векторно-конвейерные системы характеризуются высокой производительностью при полной загрузке их вычислительных устройств, которая имеет место только при решении определенного, достаточно узкого, круга задач. В качестве примера векторно-конвейерной системы приведем легендарную супер-ЭВМ CYBER-205 фирмы CDC. CYBER-205 имеет следующие конвейерные функциональные устройства: · одно конвейерное функциональное устройство «скалярных» операций с конвейерами o сложения (5-ти ступенчатый); o умножения (5-ти ступенчатый); o логических операций сложения (3-х ступенчатый); o цикла; o извлечения корня; o деления; · 1, 2 или 4 конвейерных функциональных устройства «векторных» операций с конвейерами o сложения; o умножения; o сдвига; o логических операций; o задержки. В качестве примера современной супер-ЭВМ, использующей векторно-конвейерные процессоры, приведем японскую систему Fujitsu-VPP5000. На верхнем уровне Fujitsu-VPP5000 имеет MPP архитектуру. Производительность одного процессора системы составляет 9.6 Гфлопс, пиковая производительность системы может достигать 1249 Гфлопс, максимальная емкость памяти - 8 Тб. Система масштабируется до 512 узлов.
Популярное: Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Почему стероиды повышают давление?: Основных причин три... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1749)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |