Кластерные системы (вычислительные кластеры)
Кластерные системы (вычислительные кластеры) представляют собой более дешевый вариант MPP-систем. Вычислительный кластер состоит из совокупности персональных компьютеров или рабочих станций), объединенных локальной сетью в качестве коммуникационной среды. Детально вычислительные кластеры рассмотрены позже. Рис. 2. Классификация мультипроцессоров и мультикомпьютеров. SMP-системы Все процессоры SMP-системы имеют симметричный доступ к памяти, т.е. память SMP-системы представляет собой UMA-память. Под симметричностью понимается следующее: равные права всех процессоров на доступ к памяти; одна и та же адресация для всех элементов памяти; равное время доступа всех процессоров системы к памяти (без учета взаимных блокировок). Общая структура SMP-системы приведена на рис. 3. Коммуникационная среда SMP-системы строится на основе какой-либо высокоскоростной системной шины или высокоскоростного коммутатора. Кроме одинаковых процессоров и общей памяти M к этой же шине или коммутатору подключаются устройства ввода-вывода. За кажущейся простотой SMP-систем скрываются значительные проблемы, связанные в основном с оперативной памятью. Дело в том, что в настоящее время скорость работы оперативной памяти значительно отстает от скорости работы процессора. Для того чтобы сгладить этот разрыв, современные процессоры снабжаются высокоскоростной буферной памятью (кэш-памятью). Скорость доступа к этой памяти в несколько десятков раз превышает скорость доступа к основной памяти процессора. Однако наличие кэш-памяти нарушается принцип равноправного доступа к любой точке памяти, поскольку данные, находящиеся в кэш-памяти одного процессора, недоступны для других процессоров. Поэтому после каждой модификации копии переменной, находящейся в кэш-памяти какого-либо процессора, необходимо производить синхронную модификацию самой этой переменной, расположенной в основной памяти. В современных SMP-системах когерентность кэш-памяти поддерживается аппаратно или операционной системой. Рис. 3. Общая структура SMP-системы Наиболее известными SMP-системами являются SMP-cерверы и рабочие станции IBM, HP, Compaq, Dell, Fujitsu и др. SMP-система функционирует под управлением единой операционной системой (чаще всего – UNIX и подобной ей). Из-за ограниченной пропускной способности коммуникационной среды SMP-системы плохо масштабируются. В настоящее время в реальных системах используется не более нескольких десятков процессоров. Известным неприятным свойством SMP-систем является то, что их стоимость растет быстрее, чем производительность при увеличении числа процессоров в системе. MPP-системы. MPP-системы строится из процессорных узлов, содержащих процессор, локальный блок оперативной памяти, коммуникационный процессор или сетевой адаптер, иногда - жесткие диски и/или другие устройства ввода/вывода. По сути, такие модули представляют собой полнофункциональные компьютеры (см. рис. 4.). Доступ к блоку оперативной памяти данного модуля имеет только процессор этого же модуля. Модули взаимодействуют между собой через некоторую коммуникационную среду. Используются два варианта работы операционной системы на MPP-системах. В одном варианте полноценная операционная система функционирует только на управляющей ЭВМ, а на каждом отдельном модуле работает сильно урезанный вариант операционной системы, поддерживающий только базовые функции ядра операционной системы. Во втором варианте на каждом модуле работает полноценная UNIX-подобная операционная система. Заметим, что необходимость наличия (в том или ином виде) на каждом процессоре MPP-системы операционной системы, позволяет использовать только ограниченный объем памяти каждого из процессоров. По сравнению с SMP-системами, архитектура MPP-системы устраняет одновременно как проблему конфликтов при обращении к памяти, так и проблему когерентности кэш-памяти. Главным преимуществом MPP-систем является хорошая масштабируемость. Так супер-ЭВМ серии CRAY T3E, способны масштабироваться до 2048 процессоров. Практически все рекорды по производительности на сегодняшний день установлены именно на MPP-системах, состоящих из нескольких тысяч процессоров. Рис. 4. Общая структура MPP-системы. С другой стороны, отсутствие общей памяти заметно снижает скорость межпроцессорного обмена в MPP-системах. Это обстоятельство для MPP-систем выводит на первый план проблему эффективности коммуникационной среды. Кроме того, в MPP-системах требуется специальная техника программирования для реализации обмена данными между процессорами. Этим объясняется высокая цена программного обеспечения для MPP-систем. Этим же объясняется то, что написание эффективных параллельных программ для MPP-систем представляет собой более сложную задачу, чем написание таких же программ для SMP-систем. Для широкого круга задач, для которые известны хорошо зарекомендовавшие себя последовательные алгоритмы, не удается построить эффективные параллельные алгоритмы для MPP-систем. NUMA-системы. Логически общий доступ к данным может быть обеспечен и при физически распределенной памяти. При этом расстояние между различными процессорами и различными элементами памяти, вообще говоря, различно и длительность доступа различных процессоров к различным элементам памяти различна. Т.е. память таких систем представляет собой NUMA-память. NUMA-система обычно строится на основе однородных процессорных узлов, состоящих из небольшого числа процессоров и блока памяти. Модули объединены с помощью некоторой высокоскоростной коммуникационной среды (см. рис. 5). Поддерживается единое адресное пространство, аппаратно поддерживается доступ к удаленной памяти, т.е. к памяти других модулей. При этом доступ к локальной памяти осуществляется в несколько раз быстрее, чем к удаленной. По существу, NUMA-система представляет собой MPP-систему, где в качестве отдельных вычислительных элементов используются SMP-узлы. Среди NUMA-систем выделяют следующие типы систем: · COMA-системы, в которых в качестве оперативной памяти используется только локальная кэш-память процессоров (cache-only memory architecture - COMA); · CC-NUMA-системы, в которых аппаратно обеспечивается когерентность локальной кэш-памяти разных процессоров (cache-coherent NUMA - CC-NUMA); · NCC-NUMA-системы, в которых аппаратно не поддерживается когерентность локальной КЭШ памяти разных процессоров (non-cache coherent NUMA - NCC-NUMA). К данному типу относится, например, система Cray T3E. Рис. 5. Общая структура NUMA-системы. Логическая общедоступность памяти в NUMA-системах, с одной стороны, позволяет работать с единым адресным пространством, а, с другой стороны, позволяет достаточно просто обеспечить высокую масштабируемость системы. Данная технология позволяет в настоящее время создавать системы, содержащие до нескольких сот процессоров. NUMA-системы серийно производятся многими компьютерными фирмами как многопроцессорные серверы и прочно удерживают лидерство в классе малых суперкомпьютеров.
Популярное: Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1369)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |