Мегаобучалка Главная | О нас | Обратная связь


Химическая защита деревянных конструкций и элементов от биологических вредителей



2016-01-26 1103 Обсуждений (0)
Химическая защита деревянных конструкций и элементов от биологических вредителей 0.00 из 5.00 0 оценок




Химические средства для защиты древесины от био­вредителей называются антисептиками, причем химиче­ские средства, предназначенные для защиты древесины от поражения грибами, называются фунгицидами, а от поражения насекомых— инсектицидами. Защитные сред­ства изготовляются на основе неорганических (соли) и органических соединений. Водорастворимые средства для защиты древесины поставляются в виде солей, сухих смесей солен или паст. Как правило для химической за­щиты древесины используют водные растворы солей. Органические вещества применяют в сочетании с органи­ческими разбавителями или растворителями, а также с соответствующими добавками, например пигмента, ста­билизатора, эмульгатора и т. д.

Маслянистые защитные средства (каменноугольное масло, антраценовое и т. д.) помимо масел содержат растворитель и другие добавки. Как правило маслянис­тые средства из-за их специфического запаха используют для защиты деревянных конструкций и деталей, экс­плуатирующихся на открытом воздухе или в воде. На­пример, для защиты древесины от морских древоточцев применяют пропитку креозотовым маслом.

Согласно СНиП Ш-19-75, химические средства, при­меняемые для защиты деревянных конструкций от био­вредителей, разделяются на: а) влагозащитные лаки и эмали; б) антисептические водные и малянистые пропи­точные составы и пасты.

Выбор средств для биологической защиты древесины осуществляется с учетом условий эксплуатации деревян­ных конструкций или элементов (на открытом воздухе, в закрытых помещениях и т. д.), назначения защитного средства, а также способа защитной обработки древеси­ны (нанесение кистью, роликом или напылением, окуна­ние, пропитка под давлением, и т.д.), химической совме­стимости защитных средств с другими материалами. При повторной защитной обработке деревянных конструкций выбор защитного средства зависит также от химической совместимости вновь используемого защитного средства с примененным ранее.Если для защитной обработки при­менялись водорастворимые составы (соли), то для по­вторной обработки пригодны органические средства. Од­нако если при предшествующей обработке древесины использовались маслянистые составы, то последующая обработка древесины водными растворами солей невоз­можна из-за гидрофобных свойств масла.

 

5. Защита деревянных конструкций от огня

Горение представляет собой реакцию соединения го­рючих компонентов древесины с кислородом воздуха, со­провождающуюся выделением тепла или дыма, появле­нием пламени и тления. Возгорание древесины может возникнуть в результате кратковременного нагрева ее до температуры 250 °Сили длительного воздействия более низких температур.При горении происходит хими­ческая деструкция (пиролиз) древесины. Вначале в результате повышения температуры из древесины испа­ряется влага и пока влага не испарится, температура древесины остается 100 °С. С повышением температуры до 150—210 °С древесина высыхает, изменяет цвет (жел­теет), появляются первые признаки химической деструк­ции — обугливание ее. Термическое разложение отдель­ных компонентов древесины происходит при различной температуре: гемицеллюлозы 160—170, целлюлозы 280— 380, лигнина 200—500 °С. Пиролиз древесины сопровож­дается выделением летучих веществ, содержащих угле­род: СО2, СО, С2Н4, С3Н8 СН4 и др.

Таким образом, при нагревании древесины до темпе­ратуры пожаров (800—900 °С) происходит ее термичес­кое разложение с образованием смеси газообразных продуктов и твердого остатка в виде угля.

Конструкционные и химические меры защиты деревянных конструкций от пожарной опасности:

При использовании деревянных конструкций следует соблюдать мероприятия по их защите от возгорания. С этой целью не рекомендуется применять конструкции из неклееной древесины в условиях длительного нагрева, если температура окружающего воздуха превышает 50 °С и для конструкций из клееной древесины 35 °С.

Деревянные конструкции должны быть разделены на части противопожарными преградами из несгораемых материалов. В поперечном направлении здания противо­пожарные диафрагмы устанавливают вдоль несущих конструкций с шагом не более 6 м. Вентилируемые ограждающие конструкции покрытий также должны расчленяться диафрагмами из несгораемых материалов на отсеки. Деревянные конструкции не должны иметь сообщающихся полостей с тягой воздуха, по которым может распространяться пламя, недоступное для туше­ния.

В противопожарном отношении предпочтительнее де­ревянные конструкции массивного прямоугольного сече­ния с закруглениями, имеющие большие пределы огне­стойкости, чем дощатые или клеефанерные.

Опасны в пожарном отношении металлические на­кладки, болты и другие детали соединительных и опор­ных узлов деревянных элементов, так как они, являясь проводниками тепла, снижают предел огнестойкости де­ревянных конструкций, поэтому металлические узлы и соединения необходимо тщательно защищать огнезащит­ными покрытиями.

К химическим мерам защиты деревянных конструк­ций от возгорания относится применение пропитки огнезащитными составами или нанесение огнезащитных красок. Защитные средства, предохраняющие древесину от возгорания, называются антипиренами. Огнезащит­ные средства представляют собой вещества, способные при нагревании разлагаться с выделением большого ко­личества негорючих газов, либо увеличиваясь в объеме, создавать защитный слой, препятствующий возгоранию древесины и распространению по ней огня. Как прави­ло, огнезащитные составы включают в себя смесь не­скольких веществ и наносятся в виде водных растворов.

К противопожарной защите древесины химическими средствами следует относиться дифференцированно, все зависит от условий эксплуатации конструкции, огнестой­кости зданий и сооружений, размеров деревянных эле­ментов и степени защищенности (глубины пропитки). Для клееных конструкций рекомендуется применять вспучивающиеся составы и антипирены, наносимые на поверхность конструкций, для конструкций , из цельной древесины можно использовать пропиточные составы, а для защиты деревянных элементов каркаса ограждающих конструкций требуется глубокая пропитка антипиренами под давлением.

Антипирены повышают придел огнестойкости конструкции сечением менее 120х120мм на 5мин и уменьшают пределы распространения огня по деревянным конструкциям по вертикали менее 40см по горизонтали менее 25см и переводят древесину в группу трудносгораемых материалов.

 

 

6. Древесные пластики— это материалы, полученные соединением синтетическими смолами продуктов пере­работки натуральной древесины. К ним относятся древесно-слоистые пластики, дрёвесно-волокнистые и древесно-стружечные плиты, бумажный слоистый пластик (гетинакс) и др.

Древесно-слоистые пластики изготовляют из тонких листов сушеного березового, липового или букового шпо­на, пропитанного и склеенного между собой различны­ми синтетическими смолами при высоком давлении и температуре. В зависимости от расположения волокон шпона в смежных слоях ДСП выпускаются несколько марок. Для строительных конструкций наиболее пер­спективна марка ДСП-Б, где через каждые 10—20 про­дольных слоев шпона укладывают один поперечный слой.

Прочность древесно-слоистых пластиков превышает прочность древесины вследствие уплотнения материала прессованием и термической обработкой тонких слоев древесного шпона, глубоко пропитанных прочными и водостойкими смолами. Древесный шпон пропитывают преимущественно резольными, фенолоформальдегидными или карбамидными смолами с последующей просуш­кой.

ДСП выпускаются промышленностью в виде плит следующих размеров: длина 0,7—5,6 м, ширина до 1,2 м, толщина 3—60 мм. Плиты ДСП обладают хорошей во­достойкостью, стойкостью к органическим растворите­лям и маслам, легко поддаются механической обработ­ке— пилению, строганию, фрезерованию и т. п.

Относительно высокая стоимость ДСП не позволяет пока широко применять этот листовой материал для крупных элементов строительных конструкций. Его при­меняют в основном для изготовления средств соедине­ния элементов конструкций в виде шпонок, нагелей, ко­сынок, вкладышей.

Дрёвесно-волокнистые плиты, (ДВП) изготовляют из хаотически расположенных волокон Древесины, склеен­ных канифольной эмульсией с добавлением для некоторых типов плит фенолоформальдегидных смол. Сырьем Для изготовления ДВП являются отходы лесопильных и деревообрабатывающих производств (отрезки реек, гор­быля, брусков), которые дробят в щепу и растирают в специальных установках до волокнистого состояния. При формовании плит без уплотнения на прессах полу­чаются пористые ДВП, которые применяют для утеп­ления, звукоизоляции и отделки стен, перекрытий и по­крытий.

При длительном действии влажной среды древесно­волокнистые плиты поглощают значительное количество влаги, в результате чего набухают (в основном по тол­щине) и теряют прочность.

Древесно-стружечные плиты (ПС и ПТ)получают горячим прессованием под давлением древесных стру­жек, пропитанных синтетическими термореактивными смолами. Для изготовления ПС и ПТ применяют специ­ально изготовленную стружку, полученную на деревооб­рабатывающих станках, а также мелкую щепу (дробленку).

Специальную стружку изготовляют из низкосортной древесины, отходов лесопиления и фанерного производ­ства(рейка, горбыль, «карандаш»). Она имеет малые размеры и высокую однородность, поэтому плиты получаемыё с ее применением, обладают высокими механи­ческими свойствами и наиболее гладкой поверхностью. В качестве связующего применяют фенолоформальдегидные, мочевиноформальдегидные и мочевиномеламиновые смолы.

Плиты облицовывают с одной или двух сторон дре­весным шпоном, фанерой, бумагой, пленками и т. п. Об­лицованные плиты имеют более высокие механические показатели, ровную поверхность и хороший внешний вид.

Изготовляют древесно-стружечные плиты методом горячего прессования в этажных прессах или в специ­альном прессе непрерывного действия. В последнем слу­чае большинство древесных частиц укладывается волок­нами перпендикулярно плоскости плиты (на ребро), и изделия получаются менее прочными и более неоднород­ными.

Механические свойства плит ПС и ПТ зависят от плотности, вида и количества связующего, породы и раз­меров древесных частиц. Количество смолы принимают обычно до 10%, а древесной стружки — около 90% массы. С увеличением содержания связующего прочность плит повышается, однако при этом значительно увели­чивается себестоимость изделия, так как стоимость свя­зующего составляет около 40—50 % стоимости всей плиты.

При водопоглощении древесно-стружечные плиты разбухают. Введение гидрофобных добавок снижает разбухание плит до 10 %. Древесно-стружечные плиты обладают малой теплопроводностью и высокой звукоизо­ляционной способностью. Они хорошо поддаются обра­ботке на деревообрабатывающих станках. Их применя­ют в строительстве в качестве перегородок и для декора­тивной отделки стен и потолков.

В настоящее время разработаны древесно-стружеч­ные плиты, армированные металлической сеткой, кото­рые могут найти применение в некоторых видах строи­тельных конструкций.
7. Стеклопластики

Стеклопластики представляют собой пластмассы, состоящие из стеклянного наполнителя и связующего. В качестве последнего ис­пользуют обычно ненасыщенные полиэфирные, эпоксид­ные и фенолоформальдегидные смолы, а также некото­рые термопласты. Наполнители в настоящее время используются главным образом стекловолокнистые, свойствами которых во многом определяются физико-механические характеристики стеклопластиков.

Стеклянное волокно является для стеклопластика своеобразной арматурой подобно металлу в железобе­тоне. Смола выполняет роль связующего и в то же время защищает стеклянные волокна от влияния внешней сре­ды и способствует равномерному распределению уси­лий, возникающих в них. По химическому составу стекло, из которого выра­батывают волокна, может быть щелочным с содержани­ем окиси натрия 5—15 % и малощелочным с меньшим его содержанием. Прочность щелочного стекловолокна ниже прочности малощелочного и в значительно большей степени снижается при увлажнении. В связи с этим для изготовления стеклопластиков применяют малощелоч­ное стекловолокно.

Стеклянное волокно имеет все положительные ка­чества, присущее стеклу — негорючесть, высокую тепло­стойкость, плотность, прозрачности, а также хорошие механические показатели. Так, прочность малощелочного волокна диаметром 6 мк превышает 2 ГПа, а модель Упругости достигает 70 ГПа.

Непрерывные волокна, получаемые из расплава мас­сивного стекла, приобретают новые качества, наиболее важные из которых гибкость и высокая прочность при растяжении.

Тканые стекловолокнистые материалы благодаря их хорошим технологическим свойствам широко использу­ются в производстве изделий из стеклопластиков. Ком­позиции на основе стеклотканей и связующих называ­ются стеклотекстолитами.

Отечественный и зарубежный опыт показывает, что использование стеклопластиков в строительстве имеет немало технико-экономических преимуществ, благодаря которым они используются в строительстве главным об­разом в виде ограждающих конструкций (стеновые и кровельные панели), несущих строительных конструк­ций, архитектурно-строительных деталей и изделий, санитарно-технических изделий, декоративно-облицовочных материалов, арматуры и опалубки для бетонных конст­рукций.

В качестве ограждающих конструкций из листовых стеклопластиков наибольшее применение нашли плоские и волнистые полиэфирные стеклопластики, бесцветные или окрашенные в различные цвета. Такие материалы используются в большинстве случаев для покрытия про­мышленных зданий и сооружений.

Большое распространение в промышленном строи­тельстве индустриальных районов, где такие материалы, как листовая сталь или асбестоцементные листы, быст­ро подвергаются коррозии и разрушаются вследствие влияния агрессивных газов, получают кровельные стеклопластиковые материалы.

У нас в стране в настоящее время выпускают гладкие и волнистые листы из стеклопластиков. Эти материалы имеют удовлетворительные физи­ко-механические свойства, небольшой объемный вес, светопрозрачность и хороший внешний вид. Их исполь­зуют для устройства световых фонарей, покрытий про­мышленных и общественных зданий (летних павильо­нов, кафе и т.д.), навесов, балконных ограждений, стеновых панелей и перегородок.

Плоские и волнистые листы из стеклопластиков (не­прозрачные и прозрачные) целесообразно применять при строительстве взрывоопасных помещений, а также зда­ний и сооружений, расположенных в сейсмических районах. Такие синтетические материалы при разрушении не дают осколков и имеют небольшую массу по сравне­нию с другими строительными материалами.

Стеклопластики на полиэфирных смолах применяют для стеновых и кровельных панелей неотапливаемых зданий, трехслойных панелей, различных профильных изделий, а также в качестве защитного покрытия желе­зобетонных конструкций, подвергающихся воздействию агрессивных сред, а также периодическим заморажива­нию и оттаиванию. Дол­говечность железобетонных конструкций с защитным покрытием увеличивается в несколько раз.

В строительстве промышленных, общественных и сельскохозяйственных зданий и сооружений прозрачные листовые кровельные материалы из стеклопластиков в сочетании с другими кровельными и стеновыми материа­лами используются для устройства отдельных прозрачных участков кровли и стен. Благодаря применению прозрачных стеклопластиков стало возможным значи­тельно упростить конструкцию фонарей многопролет­ных промышленных зданий.

Погонажные элементы, изготовленные из стекло­пластика могут найти применение в конст­рукциях ферм, прогонов, решетчатых стоек и т.д. Тех­нология изготовления этих изделий позволяет получать на прессах погонажные изделия практически любого попе­речного сечения и любой длины. Несущие конструкции, изготовленные из таких профилей, целесообразно при­менять в сооружениях, которые подвержены действию агрессивных сред, а также «в радиопрозрачных», немаг­нитных, электроизоляционных и других сооружениях специального назначения.

Наиболее эффективными конструкциями из пласт­масс являются пространственные конструкции в виде оболочек покрытия, в которых благодаря рациональной геометрической форме в значительной степени компен­сируется такой недостаток пластмасс, как повышенная деформативность вследствие относительно низкого мо­дуля упругости.

Относительный недоста­ток пространственных конструкций — их более сложный монтаж, особенно конструкций, состоящих из криволи­нейных элементов. Из пластмасс, используемых для из­готовления пространственных конструкций, преимущест­венное распространение получили стеклопластики и пенопласты.

 

 

8. Механические свойства при растяжении, сжатии и изгибе вдоль волокон

Предел прочности древесины при растяжении вдоль волокон в стандартных чистых образцах (влажностью 12%) высок — для сосны и ели он в среднем 100 МПа. Модуль упругости 11-14 ГПа. Наличие сучков и присучкового косослоя значительно снижает сопротивление растяжению. Особенно опасны сучки на кромках с вы­ходом на ребро. Опыты показывают, что при размере сучков ¼ стороны элемента предел прочности составля­ет всего 0,27 предела прочности стандартных образцов

При ослаблении деревянных элементов отверстиями и врезками их прочность снижается больше, чем получа­ется при расчете по площади нетто. Здесь сказывается отрицательное влияние концентрации напряжений у мест ослаблений. Опыты показывают также, что прочность при растяжении зависит от размера образца; прочность крупных образцов в результате большей неоднородности их строения меньше, чем мелких.

При разрыве поперек волокон вследствие анизотроп­ности строения древесины предел прочности в 12— 17 раз меньше, чем при растяжении вдоль волокон. Следствием этого является большое влияние косослоя, при котором направление усилия не совпадает с направ­лением волокон. Чем значительнее косослой, тем боль­ше составляющая усилия, перпендикулярная волокнам, и тем меньше прочность элемента. Косослой — второй по значимости порок," величина которого в растянутых эле­ментах должна строго ограничиваться.

Диаграмма работы сосны на растяжение (рис. 1.11), в которой по оси абсцисс откладывается относительная деформация е, а по оси ординат относительное напря­жение ф, выраженное в долях от предела прочности (так называемая приведенная диаграмма), при ф=0,5 имеет незначительную кривизну и в расчетах может приниматься прямолинейной. Значение ф = 0,5 рассмат­ривается при этом как предел пропорциональности.

Испытания стандартных образцов на сжатие вдоль волокон дают значения предела прочности в 2—2,5 раза меньшие, чем при растяжении. Для сосны и ели при влажности 12% предел прочности на сжатие в среднем 40 МПа, а модуль упругости примерно такой же, как при растяжении. Влияние пороков (сучков) при сжатии меньше, чем при растяжении.При размере сучков, составляющих '/з сто­роны сжатого элемента, прочность при сжатии будет 0,6—0,7 прочности элемента тех же размеров, но без суч­ков. Кроме того, в деревянных конструкциях размеры сжатых элементов обычно назначаются из расчёта на продольный изгиб, т. е. при пониженном напряжении, а не из расчета на прочность. Благодаря указанным осо­бенностям работа сжатых элементов в конструкциях бо­лее надежна, чем растянутых. Этим объясняется широ­кое применение металлодеревянных конструкций, имею­щих основные растянутые элементы из стали, а сжатые и сжато-изгибаемые из дерева.

При поперечном изгибе значение предела прочности занимает промежуточное положение между прочностью на сжатие и растяжение. Для стандартных образцов из сосны и ели при влажности 12 % предел прочности при изгибе в среднем 75 МПа. Модуль упругости примерно такой же, как при сжатии и растяжении. Поскольку при изгибе имеется растянутая зона, то влияние сучков и ко­сослоя значительно. При размере сучков в 7з стороны сечения элемента предел прочности составляет 0,5—0,45 прочности бессучковых образцов. В брусьях и особенно в бревнах это отношение выше и доходит до 0,6—0,8. Влияние пороков в бревнах при работе на изгиб вообще меньше, чем в пиломатериалах, так как в бревнах отсут­ствует наблюдаемый в пиломатериалах выход на кром­ку перерезанных при распиловке волокон и отщепление их в присучковом косослое при изгибе элемента.

Опыты и теоретические исследования показывают, что условный предел прочности при изгибе зависит от формы поперечного сечения. При одном и том же момен­те сопротивления у круглого сечения он больше, чем у прямоугольного, а у двутаврового сечения меньше, чем у прямоугольного. С увеличением высоты сечения предел прочности снижается. Все эти факторы учитываются в расчете введением соответствующих коэффициентов: к расчетным сопротивлениям.

 

9. Работа древесины на смятие, скалывание

Работа древесина на смятие вдоль волокон не отличается от работы на сжатие, специальных образцов для таких испытаний гостом не предусмотрено. Смятию поперек волокон древесина сопротивляется значительно хуже чем вдоль волокон раз в 5. в этом направлении древесина деформируется на много больше чем вдоль волокон.



2016-01-26 1103 Обсуждений (0)
Химическая защита деревянных конструкций и элементов от биологических вредителей 0.00 из 5.00 0 оценок









Обсуждение в статье: Химическая защита деревянных конструкций и элементов от биологических вредителей

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1103)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)