Мегаобучалка Главная | О нас | Обратная связь


КВАНТОВЫЕ СВОЙСТВА СВЕТА



2018-07-06 671 Обсуждений (0)
КВАНТОВЫЕ СВОЙСТВА СВЕТА 0.00 из 5.00 0 оценок




Распределение энергии в спектре излучения нагретых твердых тел. Изучение явлений дифракции, интерференции и поляризации света привело к утверждению электромагнитной волновой теории света.

Излучение электромагнитных волн в диапазоне радиоволн происходит при ускоренном движении электронов, например при колебаниях электронов в антенне радиопередатчика. Можно предположить, что излучение видимого света нагретыми телами также обусловлено колебательными движениями электронов, только с частотами гораздо более высокими, чем в антенне радиопередатчика.

Проверка правильности такого предположения могла быть выполнена путем сравнения теоретически предсказываемого электромагнитной теорией закона распределения энергии в сплошном спектре излучения нагретого тела с наблюдаемым экспериментально.

Пример экспериментально полученной кривой распределения энергии в спектре излучения нагретого тела представлен на рисунке 296,а. По оси абсцисс отложены длины волн, по оси ординат - мощность излучения единицы поверхности светящегося тела в единичном интервале длин волн.

Попытка теоретического вывода закона распределения энергии в сплошном спектре была сделана английским физиком Д. Рэлеем. Рэлей рассматривал излучение в замкнутом объеме как систему стоячих монохроматических волн.

Полученный из таких предположений закон распределения энергии в сплошном спектре излучения представлен на рисунке 296,б.

Рис. 296

По этому закону мощность излучения должна непрерывно возрастать с уменьшением длины волны излучения. Это значит, что в тепловом излучении должно быть много ультрафиолетовых и рентгеновских лучей, чего на самом деле не наблюдается. Если бы этот закон выполнялся во всем диапазоне частот, то полная энергия излучения светящегося тела была бы бесконечно большой.

Гипотеза Планка. Стремясь преодолеть затруднения классической теории при объяснении излучения нагретого твердого тела, немецкий физик Макс Планк в 1900 г. высказал гипотезу, которая положила начало подлинной революции в теоретической физике. Смысл этой гипотезы заключается в том, что запас энергии колебательной системы, находящейся в равновесии с электромагнитным излучением, не может принимать любые значения. Энергия элементарных систем, поглощающих и излучающих электромагнитные волны, обязательно должна быть равна целому кратному некоторого определенного количества энергии.

Минимальное количество энергии, которое система может поглотить или излучить, называется квантом энергии. Энергия кванта должна быть пропорциональна частоте колебаний :

. (82.1)

Коэффициент пропорциональности в этом выражении носит название постоянной Планка. Постоянная Планка равна 6,626·10-34 Дж·с.

Исходя из этой новой идеи, Планк получил закон распределения энергии в спектре, хорошо согласующийся с экспериментальными данными. Хорошее согласие теоретически предсказанного закона с экспериментом было основательным подтверждением квантовой гипотезы Планка.

Открытие фотоэффекта. Гипотеза Планка о квантах послужила основой для объяснения явления фотоэлектрического эффекта, открытого в 1887 г. немецким физиком Генрихом Герцем.

Явление фотоэффекта обнаруживается при освещении цинковой пластины, соединенной со стержнем электрометра. Если пластине и стержню передан положительный заряд, то электрометр не разряжается при освещении пластины (рис. 297,а). При сообщении пластине отрицательного электрического заряда электрометр разряжается, как только на пластину попадает ультрафиолетовое излучение (рис. 297,б). Этот опыт доказывает, что с поверхности металлической пластины под действием света могут освобождаться отрицательные электрические заряды. Измерение заряда и массы частиц, вырываемых светом, показало, что эти частицы - электроны.

Рис. 297

Явление испускания электронов веществом под действием электромагнитного излучения называется фотоэффектом.

Законы фотоэффекта. Количественные закономерности фотоэлектрического эффекта были установлены выдающимся русским физиком Александром Григорьевичем Столетовым (1839-1896) в 1888-1889 гг. Используя вакуумный стеклянный баллон с двумя электродами (рис. 298), он исследовал зависимость силы тока в баллоне от напряжения между электродами и условий освещения электрода.

Рис. 298

При неизменных условиях освещения одного электрода зависимость силы тока от напряжения имела вид, представленный на рисунке 299.

Если подключить к освещаемому электроду отрицательный полюс батареи, то сначала сила тока с повышением напряжения возрастает, а затем сила тока остается постоянной. Сила тока насыщения пропорциональна мощности светового потока излучения. Этому случаю соответствует участок графика на рисунке 299 слева от оси ординат. Измерив запирающее напряжение, можно найти максимальное значение кинетической энергии электронов, вырываемых светом из катода:

(82.2)

Рис. 299

Оказалось, что задерживающее напряжение, а значит, и кинетическая энергия фотоэлектронов не зависят от мощности светового излучения, но увеличиваются с возрастанием частоты света.

Перечисленные экспериментальные факты позволили сформулировать следующие законы фотоэффекта:

1. Сила тока насыщения прямо пропорциональна мощности светового излучения, падающего на поверхность тела.

2. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от мощности светового излучения.

3. Если частота света меньше некоторой определенной для данного вещества минимальной частоты, то фотоэффект не происходит (красная граница фотоэффекта).

Затруднения волновой теории при объяснении фотоэффекта. Объяснить основные законы фотоэффекта на основе электромагнитной теории света не удалось.

Согласно электромагнитной теории под действием света, падающего, например, на поверхность твердого тела, должны приходить в вынужденные колебания одновременно все электроны в слое вещества такой толщины, на которую проникает в него электромагнитная (световая) волна.

Для освобождения с поверхности тела электрон должен обладать кинетической энергией, превышающей работу выхода .

Интервал времени , в течение которого электрон может накопить энергию, необходимую для своего освобождения, можно определить, разделив работу выхода на значение энергии, приобретаемой электроном в единицу времени от электромагнитного поля.

Время запаздывания по расчетам на основе электромагнитной теории света должно быть весьма значительным, по крайней мере, должно составлять несколько десятков минут. В действительности же фотоэффект возникал сразу же после начала освещения; никакого запаздывания, хотя бы на миллионные доли секунды, в экспериментах не наблюдалось.

Электромагнитная теория света не могла объяснить независимость энергии фотоэлектронов от мощности светового излучения, существование красной границы фотоэффекта, пропорциональность кинетической энергии фотоэлектронов частоте света.

Фотоны. Объяснение основных законов фотоэффекта было дано Альбертом Эйнштейном (1879-1955) в 1905 г. Гипотезу Планка об излучении света в виде отдельных порций - квантов с энергией, пропорциональной частоте света, А. Эйнштейн дополнил предположением о дискретности, локализации этих квантов в пространстве.

Согласно квантовым представлениям свет - это поток особых частиц - фотонов. Энергия каждого фотона определяется формулой

, (82.3)

где = 6,626176·10-34 Дж·с-1 - постоянная Планка; - частота света.

На основе представлений о фотоне как частице, которая может излучаться или поглощаться лишь как целое, явление фотоэффекта получает простое объяснение: поглощая один фотон, электрон внутри фотокатода увеличивает свою энергию на значение энергии фотона .

При условии электрон может покинуть фотокатод. Если на пути к поверхности фотокатода этот электрон не растратит часть полученной от фотона энергии во взаимодействиях с электронами других атомов, то он выйдет из фотокатода с кинетической энергией:

. (82.4)

Это соотношение называется уравнением Эйнштейна для фотоэффекта.

Таким образом, фотонная теория света объяснила наблюдаемую экспериментально линейную зависимость максимальной кинетической энергии фотоэлектронов от частоты света, вызывающего фотоэффект.

Красная граница фотоэффекта в фотонной теории определяется из уравнения Эйнштейна условием равенства энергии фотона работе выхода электрона :

откуда

(82.5)

Становится понятным и отсутствие запаздывания возникновения фототока после начала освещения: фотон, достигший фотокатода, практически мгновенно может освободить из него один электрон. Пропорциональность силы фототока мощности излучения в фотонной теории просто очевидна, так как, чем больше фотонов падает на поверхность тела, тем больше электронов они освобождают.

Применение фотоэффекта. Простейшим прибором, работающим на основе использования фотоэффекта, является вакуумный фотоэлемент. Вакуумный фотоэлемент состоит из стеклянной колбы, снабженной двумя электрическими выводами. Внутренняя поверхность колбы частично покрыта тонким слоем металла. Это покрытие служит катодом фотоэлемента. В центре баллона расположен анод. Выводы катода и анода подключаются к источнику постоянного напряжения. При освещении катода с его поверхности вырываются электроны. Этот процесс называется внешним фотоэффектом. Электроны движутся под действием электрического поля к аноду. В цепи фотоэлемента возникает электрический ток, сила тока пропорциональна мощности светового излучения. Таким образом фотоэлемент преобразует энергию светового излучения в энергию электрического тока.

Для преобразования энергии светового излучения в энергию электрического тока широко применяются и полупроводниковые фотоэлементы.

Полупроводниковый элемент имеет следующее устройство. В плоском кристалле кремния или другого полупроводника с дырочной проводимостью создается тонкий слой полупроводника с электронной проводимостью. На границе раздела этих слоев возникает -переход. При освещении полупроводникового кристалла в результате поглощения света происходит изменение распределения электронов и дырок по энергиям. Этот процесс называется внутренним фотоэффектом. В результате внутреннего фотоэффекта увеличивается количество свободных электронов и дырок в полупроводнике, происходит их разделение на границе -перехода.

При соединении противоположных слоев полупроводникового фотоэлемента проводником в цепи возникает электрический ток; сила тока в цепи пропорциональна мощности светового потока излучения, падающего на фотоэлемент.

Включение фотоэлемента последовательно с обмоткой электромагнитного реле позволяет автоматически включать или выключать исполнительные устройства при попадании света на фотоэлемент. Фотоэлементы используются в кино для воспроизведения звукового сопровождения, записанного на киноленту в виде звуковой дорожки.

Полупроводниковые фотоэлементы широко используются на искусственных спутниках Земли, межпланетных автоматических станциях и орбитальных станциях в качестве энергетических установок, с помощью которых энергия солнечного излучения преобразуется в электрическую энергию. КПД современных полупроводниковых фотоэлектрических генераторов превышает 20%.

Полупроводниковые фотоэлементы все шире применяются в быту. Они используются в качестве невозобновляемых источников тока в часах, микрокалькуляторах; проходят испытания первые солнечные электромобили.



2018-07-06 671 Обсуждений (0)
КВАНТОВЫЕ СВОЙСТВА СВЕТА 0.00 из 5.00 0 оценок









Обсуждение в статье: КВАНТОВЫЕ СВОЙСТВА СВЕТА

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (671)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)