Мегаобучалка Главная | О нас | Обратная связь


Самая точная сейсмография



2018-07-06 496 Обсуждений (0)
Самая точная сейсмография 0.00 из 5.00 0 оценок




 

Исследование и по возможности предсказание землетрясений всегда было серьезной научной задачей. От ее решения зависели порой тысячи человеческих жизней. И очень значимый вклад в прикладную сейсмологию внес наш соотечественник — князь Борис Борисович Голицын.

 

Сейсмограф изобрели в Китае. Самый старый из подобных приборов (по-современному он называется сейсмоскопом) датируется 132 годом до нашей эры — его спроектировал и построил великий философ и ученый Чжан Хэн. Сейсмоскоп Чжан Хэна представлял собой двухметровый в диаметре закрытый сосуд с подобием маятника внутри. Наружу открывались расположенные по окружности отверстия, украшенные драконьими головами. Когда земля начинала трястись — еще даже незаметно для человека — маятник отклонялся и выталкивал через одно из отверстий шар в специальный поддон. Таким образом регистрировался не только факт начинающегося землетрясения, но и его направление.

Маятник оставался основной деталью всех сейсмографов вплоть до начала XX века. И сегодня «механика» занимает очень значительное место на рынке этих приборов, правда, постепенно уступая нишу более совершенным цифровым системам. Внутри классического механического сейсмографа установлен груз на пружине; при землетрясении корпус прибора смещается, а груз остается неподвижным. Их взаимное перемещение фиксируется на специальной ленте. Наибольший вклад в создание и развитие подобных сейсмографов внесла команда британских исследователей, работавшая в 1870–1880-х годах в Японии: Джон Милн, Джеймс Альфред Юинг и Томас Ломар Грей. В 1880 году они начали исследовать землетрясения, основали Японское сейсмологическое общество и разработали первый сейсмограф с горизонтально расположенным маятником — самую распространенную по сей день конструкцию. Правда, тут тоже есть момент исторического спора: еще до них подобную схему описывал немецкий астроном Иоганн Карл Фридрих Цёлльнер. Другое дело, что он так и не создал работающего прибора.

Но это всё иностранцы, а наша задача — выяснить, где в истории место князя Бориса Борисовича Голицына.

 

Русский князь

 

Титул и фамилия говорят сами за себя. Голицын происходил из знатнейшей и известнейшей дворянской фамилии; он родился в 1862 году, прошел домашнее обучение и школу для аристократической элиты, устроенную на дому графом Антоном Степановичем Апраксиным, а затем был направлен в Морское училище. Позже оно получило название, уже привычное для этой книги, — Морской кадетский корпус. Юного Голицына ждала военная карьера. После окончания училища он служил офицером на фрегате «Герцог Эдинбургский», но в 1881-м ушел в отставку, потому что душа его не лежала к военным занятиям. Единственный толк, который Голицын извлек из службы, заключался в знакомстве с великим князем Константином Константиновичем. Сегодня он более известен как К. Р. — этим псевдонимом отпрыск царской фамилии подписывал свои литературные работы (к слову, талантливые; он стал впоследствии известным поэтом и переводчиком, в частности переводил на русский Шекспира).

В последующие годы Голицын учился сперва в Николаевской морской академии, затем — в Страсбургском университете. Он пытался поступить и в Петербургский университет, но выяснилось, что документы о прослушивании полного курса в Морской академии там не принимают и нужно сдавать экзамены гимназического уровня, в то время как князю стукнуло уже 24 года. Поэтому он и уехал в Страсбург, благо состояние семьи позволяло.

Дальнейшая деятельность Голицына на ниве физики и математики весьма спорна. Судя по фактам биографии, никакая флотская муштра не вывела из него некоторое дворянское самодурство, понимание собственного положения и богатства. Его работы по физике, независимо от темы, жестоко критиковали серьезные ученые; он халатно относился к расчетно-математической части и считал, что идея главенствует, а формулу может составить любой человек, даже лишенный воображения. Его диссертация «Исследования по математической физике» вызвала в научных кругах бурную полемику и вынудила Голицына перевестись из Московского университета в Юрьевский (ныне Тартуский).

Но сыграло свою роль то самое счастливое знакомство. В 1889 году Константин Константинович занял пост президента Петербургской академии наук. И в 1893-м он устроил своего скандального друга сперва в адъюнкты академии, а годом позже — в руководители физического кабинета. Впрочем, даже это десятью годами позже не помогло Голицыну: когда его выдвинули в ординарные академики, вся кафедра математики встала грудью на защиту родных стен — кандидатуру князя отклонили. Ординарным академиком он стал лишь в 1908-м.

В общем, я не очень хочу погружаться в перипетии сражений Голицына с научным сообществом. Из-за своего непростого характера и оригинального подхода к научной работе он за 10 лет сменил множество должностей и университетов и, опубликовав значительное количество научных работ, оставался при этом рядовым физиком с хорошей протекцией.

Если бы не одно «но». Он был блестящим практиком.

 

Немного о сейсмологии

 

Как уже говорилось, лидерами в сейсмологических исследованиях в конце XIX века были англичане. Физическое сообщество билось над вопросом предсказания землетрясений (окончательно не решенным до сих пор) и в рамках этих исследований пыталось разработать прибор для фиксации слабых возмущений земной коры. Иначе говоря, нужны были очень тонкие сейсмографы, способные почувствовать движение почвы, когда человек его ощутить еще не способен.

Так что британские сейсмологи активно искали международные связи, и в 1897 году сейсмологический комитет при Британской ассоциации развития науки предложил Петербургской академии план сотрудничества в этой области. На тот момент временные сейсмические комиссии в России уже создавались, в частности после Верненского землетрясения 28 мая 1887 года (сегодня Верное — это Алма-Ата). В результате 25 января 1900 года царским указом была образована Постоянная центральная сейсмическая комиссия во главе с астрономом Оскаром Андреевичем Баклундом, ординарным академиком и директором Николаевской главной астрономической обсерватории (Пулковской). Голицын на тот момент руководил Экспедицией заготовления государственных бумаг: его организационные таланты оказались значительно полезнее научных. Он действительно провел серьезную реформу работы экспедиции, полностью и очень качественно ее реорганизовав, но к нашему вопросу это отношения не имеет.

В сейсмическую комиссию Голицын вошел в качестве физика. Сложно сказать, почему именно он. Борис Борисович был фигурой заметной, но ученым средним. Скорее всего, это решение показалось оптимальным для того, чтобы обуздать его исследовательский пыл и приложить энергию к делу. И здесь, как ни странно, спорный подход Голицына к работе — «идея превыше расчета» — сработал на «отлично». Кстати, ровно того же принципа придерживался во всех своих исследованиях Альберт Эйнштейн, и это говорит о многом.

Поскольку землетрясения были настоящим бичом юга России, денег комиссия получала предостаточно, и с каждым годом количество и уровень исследований росли в геометрической прогрессии. К 1903 году в стране работали уже 17 сейсмических станций, а Россия стала одним из первых членов только-только образованной Международной сейсмологической организации.

 

Дело практики

 

Голицын с головой ушел в работу и плотно занялся конструированием новых типов сейсмографов. В первую очередь он пытался решить ту самую британскую задачу о регистрации слабых колебаний. И, как ни удивительно, оказался в этом вопросе гением. Просто он долго искал свою стезю.

Сейсмографы того времени были сугубо механическими и регистрировали колебания на закопченной бумаге. Землетрясения интенсивностью до 4 баллов они могли почувствовать разве что случайно. А если говорить о дальних землетрясениях, то здесь вступали в действие различные искажения, возникающие при прохождении сейсмическими волнами больших расстояний, а также явление резонанса. Наиболее продвинутой системой был маятник Ребера-Пашвица, способный уловить удаленное землетрясение с очень высокой магнитудой (от 7 баллов и выше); в 1889 году такой опыт, проведенный в Геодинамической обсерватории немецкого города Вильгельмсгафен, впервые более или менее удался.

Механические сейсмографы имели свой предел. Ближе всего к нему подошел выдающийся немецкий физик Эмиль Вихерт, представив одновременно с Голицыным механический сейсмограф своей конструкции, способный достигать 200-кратного увеличения сейсмических волн для их фиксации.

 

Схема горизонтального сейсмографа Голицына с горизонтальным Маятником. Сейсмограф состоит из латунного стержня а, подвешенного на двух тонких стальных нитях C1 и С2; ось вращения маятника проходит через точки б и в. На стержне эксцентрично посажен латунный груз М весом 7,2 кг, на конце стержня укреплены индукционная катушка г и медная пластинка

Источник: В. А. Красильников «Звуковые волны в воздухе, воде и твёрдых телах» (второе издание переработанное. ГИНТЛ, 1954 год).

 

Голицын же изначально стал бороться с главной проблемой механических сейсмографов — трением. Чем большее увеличение, чем большая точность нужна, тем тяжелее приходилось делать маятник для преодоления сил сопротивления. Вы скажете: «Да что это за трение, там же всего лишь перо царапает прокопченную бумажку!» Но не забывайте, что сам прибор неимоверно чувствительный, и мизерное, казалось бы, трение вносит порой погрешность, делающую замер абсолютно невозможным. Поскольку в России на тот момент была серьезно развита электротехника, Голицын задался целью добиться электрической бесконтактной фиксации показаний.

И в 1903 году он добился успеха. В его системе с маятником связывалось не перо, а индукционная катушка, движущаяся относительно постоянного магнита. Когда маятник качался, смещалась и катушка, отчего менялся магнитный поток и возникала ЭДС, пропорциональная отклонению маятника. Оставалось только зафиксировать ее. Эта технология была уже известна по фотографии: ленточная фотопленка и светолучевой метод записи.

Исключение трения позволило делать сейсмографы с увеличением в 1000 раз и более при маятнике массой всего в 10 килограммов (значительно менее точный сейсмограф Вихерта имел маятник весом в тонну). 5 марта 1903 года Борис Голицын прочел доклад о своем изобретении, получившем название гальванометрической записи, на заседании Постоянной центральной сейсмической комиссии.

Впоследствии Голицын сконструировал десятки сейсмометров и инициировал создание сейсмометрических станций 1-го класса, оборудованных по последнему слову техники и способных регистрировать удаленные землетрясения с высокой степенью точности. Главной стала Центральная сейсмическая станция в Пулково, кроме того, станции работали в Тифлисе, Иркутске, Ташкенте, Юрьеве, Баку и Макеевке, причем последние две были построены не на государственные деньги, а на средства частных инвесторов. Сейсмографы Голицына продолжали работать на станциях более полувека, до середины 1950-х годов. Уже в 1900-х его идея нашла применение и в Германии, и в Великобритании, и в десятках других государств. По сути, Борис Борисович Голицын совершил революцию в сейсмологии.

Сам он возглавил Международную сейсмическую ассоциацию и был принят во множество серьезных научных организаций: Франкфуртское физическое общество, Гёттингенскую академию наук, а также в Лондонское королевское общество. Он написал несколько значимых работ по исследованию внутреннего строения Земли и стал одним из родоначальников систематизированного изучения сейсмологических явлений.

Вот что значит — найти свое призвание.

 

P. S. Расширению сети сейсмостанций Голицына помешала война. А до ее окончания князь не дожил — умер в 1916 году в возрасте 55 лет от пневмонии. Возможно, в каком-то смысле ему повезло: сложно сказать, как сложилась бы судьба потомственного дворянина и ученого после революции.

 

 

Глава 30



2018-07-06 496 Обсуждений (0)
Самая точная сейсмография 0.00 из 5.00 0 оценок









Обсуждение в статье: Самая точная сейсмография

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (496)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)