Мегаобучалка Главная | О нас | Обратная связь


Узел автоматического электронного предохранителя постоянного тока, основные схемные решения, особенности функционирования.



2018-07-06 1373 Обсуждений (0)
Узел автоматического электронного предохранителя постоянного тока, основные схемные решения, особенности функционирования. 0.00 из 5.00 0 оценок




Неудобство плавких предохранителей состоит в том, что после каждой аварийной ситуации необходимо заменять плавкую вставку или сам предохранитель. Поэтому для защиты от короткого замыкания и токов перегрузки часто применяют автоматические выключатели, которые можно привести в рабочее состояние без замены каких-либо деталей.

Рассмотрим принцип работы автоматической пробки, широко применяемой в быту. Она включает в себя электротермический и электромагнитный предохранители. На рисунке 3.5 приведена схема, поясняющая принцип ее работы. В рабочем состоянии электрический ток протекает по цепи: фазный провод ф, неподвижные 9 и подвижные 8 контакты (замкнутые между собой), биметаллическая пластина 1, гибкий проводник 3, обмотка электромагнита 5, электрические лампочки, нулевой провод 0 питающей сети. Если в течение нескольких десятков секунд сила тока, протекающего в цепи, превышает максимально допустимое значение, то биметаллическая пластина 1, изгибаясь влево, освобождает левый конец рычага 2, удерживающего изолирующий толкатель 7 с подвижными контактами 8. В результате контакты 8 и 9 размыкаются и ток в цепи прекращается. При коротком замыкании цепи происходит практически мгновенное отключение нагрузки за счет того, что якорь 4, притягиваясь к сердечнику электромагнита 5, освобождает правый конец рычага 2. Для возвращения пробки в исходное рабочее состояние необходимо с помощью кнопки (на рисунке кнопка не показана) рычаг с толкателем опустить вниз так, чтобы он был захвачен защелками биметаллической пластины и якоря электромагнита и сжал пружину 6.

В последнее время для низковольтных цепей постоянного тока применяют электронные предохранители. Схема одного из вариантов электронного предохранителя приведена на рисунке 3.6а. При нормальном режиме работы открыт транзистор VT2 за счет протекания тока базы по цепи: плюс источника питания, резистор R1, база-эмиттер транзистора VT2, минус источника. При увеличении тока увеличивается напряжение между коллектором и эмиттером транзистора VT2 и при напряжении примерно 0,5 В начинает открываться транзистор VT1. Открытие транзистора VT1 приводит к закрытию транзистора VT2.

Если в нагрузке произошло короткое замыкание, то ток короткого замыкания протекает по цепи: плюс источника питания, короткозамкнутая нагрузка, резистор R2, переход база-эмиттер транзистора VT1, минус источника. Так как транзистор VT2 в этом случае закрыт, то ток короткого замыкания ограничен резистором R2. После устранения короткого замыкания предохранитель самостоятельно не переходит в нормальное состояние. Для этого необходимо либо на короткое время закоротить между собой выводы базы и эмиттера транзистора VT1, либо отключить и снова подключить нагрузку. В этом случае транзистор VT1 закроется, транзистор VT2 откроется и напряжение будет подано на нагрузку.

На рисунке 3.6б приведена схема устройства, ограничивающего токи большие номинального. Величина номинального тока определяется сопротивлением резистора R3. При напряжениях на резисторе R3 более 0,5 В начинает открываться транзистор VT2, транзистор VT1 закрывается и ток нагрузки ограничивается. При сопротивлении резистора R3 10 Ом ограничение тока нагрузки происходит при 50 мА. После устранения перегрузки нормальная работа устройства восстанавливается автоматически.

На рисунке 3.6вприведена схема для защиты потребителей от перенапряжения в низковольтных цепях постоянного тока. Такая защита необходима в учебных лабораториях, чтобы при использовании регулируемых источников постоянного напряжения не вывести электронные устройства за счет превышения номинального питающего напряжения. При увеличении входного напряжения выше номинального пробивается стабилитрон VD2, открывается транзистор VT1, закрывается VT2 и обеспечивается защита нагрузки от перенапряжения.

 

УСТРОЙСВО ЗАЩИТНОГО ОТКЛЮЧЕНИЯ

Рассмотрим более подробно основные способы защиты человека от поражения электрическим током, а именно, применение защитного зануления и отключения.

Для осуществления защитного зануления кроме нулевого рабочего провода используется нулевой защитный провод, который соединяют с корпусом электроустановки.

Основная функция защитного зануления - отключение поврежденного участка электрической цепи за счет перегорания предохранителей или срабатывания какой-либо другой защиты от перегрузки по току. Вторая функция защитного зануления (если вместо предохранителя вставлен “жучок” из толстого провода) - снижение напряжения, под которым в аварийной ситуации может оказаться человек.

Пусть, например, человек, стоящий в сырой обуви на электрически соединенном с землей полу, коснулся корпуса прибора (рис. 1.1 а). Из рисунка видно, что точки соединения с землей человека и вторичной обмотки трансформатора питания не совпадают (точки з1, з2). Эквивалентная схема такой ситуации приведена на рисунке 1.1б, где FU - предохранитель, Rф - сопротивление фазного провода, Rн - сопротивление нагрузки (сопротивление прибора между клеммами шнура питания), R0 - сопротивление рабочего нулевого провода, Zиз - полное сопротивление изоляции между одним из проводов шнура питания и корпусом прибора, Rч - сопротивление человека, R12 - сопротивление заземления между точками з1 и з2.

Сопротивление фазного и нулевого рабочего провода составляет обычно десятые доли ома. Сопротивление Zиз в основном определяется емкостной связью между первичной обмоткой трансформатора и магнитопроводом. Для источников питания и осциллографов, используемых в лаборатории, полное сопротивление изоляции составляет десятки мегаом.

На рисунках 1.1в-д показаны этапы упрощения эквивалентной схемы с учетом соотношения сопротивлений. Отключение нагрузки может только увеличить напряжение, приложенное к человеку (рис. 1.1в). Сопротивлениями R12 и Rф можно пренебречь по сравнению с сопротивлением Zиз (рис. 1.1г; 1.1д).

Таким образом, при самых неблагоприятных условиях (поранена кожа человека) через человека может протекать ток не более 20 мкА, а протекание такого тока человек не ощущает. Рассмотрим следующую аварийную ситуацию. Фазный провод соединился с корпусом прибора, а за корпус прибора взялся человек, стоящий на сыром полу или на соединенных с землей металлических предметах (рис. 1.2а). Корпус прибора пока с нулевым проводом не соединен. Эквивалентная схема этой ситуации представлена на рисунке 1.2б. Анализируя схемы на рисунках 1.2в-д, можно показать, что к человеку в этом случае будет приложено практически все напряжение 220 В.

Если корпус прибора соединен с нулевым защитным проводом (рис. 1.3а), то получается короткое замыкание. Эквивалентная схема приведена на рисунке 1.3б, где Rоз - сопротивление нулевого защитного провода. Сопротивление защитного нулевого провода должно быть не более 0,1 Ом. Ток короткого замыкания в этом случае существенно превысит рабочий ток предохранителя, предохранитель перегорит и напряжение с аварийного участка будет снято (см. рис. 1.3в-д).

В случае, если при коротком замыкании поставленный вместо предохранителя “жучок” не перегорит, то напряжение, под которым окажется человек, будет меньше 220 В, так как сопротивление нулевого защитного провода выбирается меньше сопротивления фазного (показать самостоятельно для сопротивления нулевого защитного провода 0,1 Ом, сопротивления фазного провода 0,4 Ом).

В школьных кабинетах физики широко используются устройства защитного отключения УЗОШ, уменьшающие вероятность поражения электрическим током человека в аварийных ситуациях.

Принцип работы устройства защитного отключения рассмотрим по упрощенной схеме (рис. 1.4). При нажатии на кнопку S1 (пуск) начинает протекать ток по цепи: фазный провод, замкнувшиеся контакты кнопки S1, нормально замкнутые контакты кнопки S2 (стоп), блок питания усилителя, нулевой провод; в результате чего срабатывает реле К2 и замыкаются контакты К2.1. После замыкания контактов К2.1 начинает протекать ток по цепи: фазный провод, замкнувшиеся контакты кнопки S1, нормально замкнутые контакты кнопки “стоп”, контакты К2.1, обмотка реле К1, нулевой провод, в результате чего замыкаются контакты К1.1, К1.2, К1.3. Тогда через нагрузку протекает ток по следующей цепи: фазный провод, замкнутый контакт К1.1, обмотка II трансформатора Тр1, резистор нагрузки, обмотка I трансформатора Тр1, контакт К1.2, нулевой провод. Контакты К1.3 блокируют кнопку S1 и нагрузка остается подключенной после отпускания кнопки пуск.

Обмотки I и II трансформатора Тр1 имеют одинаковое число витков толстого провода (обычно 3-5 витков), а обмотка III имеет большое число витков тонкого провода. Трансформатор подключается так, что при одинаковых токах через обмотки I и II ЭДС в обмотке III не наводится. Если токи, протекающие через обмотки I и II трансформатора, отличаются более чем на 10 мА, то в обмотке III наводится ЭДС, достаточная для размыкания контактов К2.1. В этом случае ток через обмотку реле К1 прекращается и размыкаются контакты К1.1 и К1.2, отключая нагрузку от сети. Таким образом, если через человека, коснувшегося одновременно фазного провода и какого-либо заземленного предмета, пойдет ток более 10 мА, то устройство защитного отключения отключит нагрузку от сети. Работоспособность устройства можно проверить, нажав на кнопку S3: если при этом нагрузка отключится от сети, то устройство исправно.

По окончании работы рекомендуется отключать нагрузку от сети нажатием на кнопку S3 (контроль). Если при нажатии на кнопку “контроль” устройство не отключается от сети, значит оно неисправно. В этом случае для отключения устройства необходимо нажать на кнопку “стоп”.

Устройство защитного отключения является дополнительной мерой защиты и его использование ни в коей мере не позволяет отказаться от соблюдения стандартных правил техники электробезопасности.

Устройство защитного отключения УЗОШ.10.2.010УХЛ4, входящее в комплект электроснабжения школьного кабинета физики, имеет следующие основные характеристики:

• питающее напряжение - 220 В,

• номинальный рабочий ток - 10 А, номинальное значение тока срабатывания при замыкании на землю - 0,01 А,

• время срабатывания при удвоенном значении тока срабатывания 0,02 А - не более 0,05 с.

Для использования в быту выпускается устройство защитного отключения УЗО.10.2.010.11.УХЛ2, которое имеет такие же характеристики.

Значение тока срабатывания устройства защитного отключения можно легко определить экспериментально. Для этого сначала необходимо убедиться в работоспособности устройства, нажав на кнопку “контроль”. Если устройство исправно, то нагрузка отключится от сети. Затем собирают электрическую цепь (рис. 1.5), содержащую последовательно соединенные миллиамперметр переменного тока с пределом измерения 15-20 мА, постоянный резистор R2 сопротивлением 15 кОм, мощностью рассеяния 2 Вт и переменный резистор R1 сопротивлением 10 кОм, мощностью рассеяния 1 Вт. Один конец этой цепи подключается к защитному нулевому проводу (к металлическому корпусу электрораспределительного щита), а второй конец – в одно из гнезд розетки на выходе устройства защитного отключения. Уменьшая сопротивление переменного резистора, фиксируют значение тока, при котором устройство защитного отключения отключит нагрузку. Если отключение нагрузки не произошло, то неправильно выбрано гнездо розетки.

В случае отсутствия амперметра ток утечки на землю можно рассчитать. Для этого используют ту же схему, но без амперметра, а в качестве резистора R1 используют магазин сопротивлений (например, Р 33). Уменьшая сопротивление магазина сопротивлений, определяют общее сопротивление цепи, при котором произойдет отключение устройства. Ток утечки рассчитывают из закона Ома. Если полученное таким образом значение тока окажется меньше приведенного в паспорте устройства, то устройство исправно.

 

74. Автоматический электронный предохранитель постоянного тока, типовая схема.

Рисунок 3.6б п.73

75. Электронный предохранитель постоянного тока с ручным управлением, типовая схема.

Рисунок 3.6в п.73

76. Автоматический электронный предохранитель переменного тока, типовая схема.

77. Электронный предохранитель переменного тока с ручным управлением, типовая схема.

78. Сенсорный регулятор постоянного напряжения, основные параметры, типовая схема.

79. Цифровой регулятор постоянного напряжения, основные параметры, типовая схема.

80. Техника безопасности при работе с электроустановками повышенного напряжения и техническими средствами систем безопасности.

 

Преподаватель А.Г.Василевский



2018-07-06 1373 Обсуждений (0)
Узел автоматического электронного предохранителя постоянного тока, основные схемные решения, особенности функционирования. 0.00 из 5.00 0 оценок









Обсуждение в статье: Узел автоматического электронного предохранителя постоянного тока, основные схемные решения, особенности функционирования.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1373)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)