Мегаобучалка Главная | О нас | Обратная связь


Затменно–двойные звезды



2019-07-03 705 Обсуждений (0)
Затменно–двойные звезды 0.00 из 5.00 0 оценок




 

Затменными переменными называются неразрешимые в телескопы тесные пары звезд, видимая звездная величина которых меняется вследствие периодически наступающих для земного наблюдателя затмений одного компонента системы другим. В этом случае звезда с большей светимостью называется главной, а с меньшей – спутником. Типичными примерами звезд этого типа являются звезды Алголь (b Персея) и b Лиры. Вследствие регулярно происходящих затмений главной звезды спутником, а также спутника главной звездой суммарная видимая звездная величина затменных переменных звезд меняется периодически.

Разность звездных величин в минимуме и максимуме называется амплитудой, а промежуток времени между двумя последовательными максимумами или минимумами – периодом переменности. У Алголя, например, период переменности равен 2d20h49m, а у b Лиры– 12d21h48m.

По характеру кривой блеска затменной переменной звезды можно найти элементы орбиты одной звезды относительно другой, относительные размеры компонентов, а в некоторых случаях даже получить представление об их форме. На рис. 4 показаны кривые блеска некоторых затменных переменных звезд вместе с полученными на их основании схемами движения компонентов. На всех кривых заметны два минимума: глубокий (главный, соответствующий затмению главной звезды спутником), и слабый (вторичный), возникающий, когда главная звезда затмевает спутник.

 

На основании детального изучения кривых блеска можно получить следующие данные о компонентах затменных переменных звезд:

1. Характер затмений (частное, полное или центральное) определяется наклонением i и размерами звезд. Когда i = 90°, затмение центральное, как у b Лиры (рис. 5). В тех случаях, когда диск одной звезды полностью перекрывается диском другой, соответствующие области кривой блеска имеют характерные плоские участки (как у IH Кассиопеи), что говорит о постоянстве общего потока излучения системы в течение некоторого времени, пока меньшая звезда проходит перед или за диском большей. В случае только частных затмений минимумы острые (как у RX

 

Геркулеса или b Персея).

2. На основании продолжительности минимумов находят радиусы компонентов R 1 и R 2, выраженные в долях большой полуоси орбиты, так как продолжительность затмения пропорциональна диаметрам звезд.

3. Если затмение полное, то по отношению глубин минимумов можно найти отношение светимостей, а при известных радиусах,– также и отношение эффективных температур компонентов.

4. Отношение промежутков времени от середины главного минимума до середины вторичного минимума и от вторичного минимума до следующего главного минимума зависит от эксцентриситета орбиты е и долготы периастра w. Точнее, фаза наступления вторичного минимума зависит от произведения . Если вторичный минимум лежит посередине между двумя главными минимумами (как у RX Геркулеса), то орбита симметрична относительно луча зрения и, в частности, может быть круговой. Асимметрия положения вторичного минимума позволяет найти произведение .

5. Наклон кривой блеска, иногда наблюдаемый между минимумами, позволяет количественно оценить эффект отражения одной звездой излучения другой, как, например, у b Персея.

6. Плавное изменение кривой блеска, как, например, у b Лиры, говорит об эллипсоидальности звезд, вызванной приливным воздействием очень близких компонентов двойных звезд. К таким системам относятся звезды типа b Лиры и W Большой Медведицы (см. рис. 5). В этом случае по форме кривой блеска можно установить форму звезд.

7. Детальный ход кривой блеска в минимумах иногда позволяет судить о законе потемнения диска звезды к краю. Выявить этот эффект, как правило, очень трудно. Однако это единственный имеющийся в настоящее время метод изучения распределения яркости по дискам звезд.

В итоге на основании вида кривой блеска затменной переменной звезды в принципе можно определить следующие элементы и характеристики системы: i – наклонение орбиты; Т – период;  – эпоху главного минимума; е – эксцентриситет орбиты; w – долготу периастра; R 1 и R 2 – радиусы компонентов, выраженные в долях большой полуоси; для звезд типа b Лиры – эксцентриситеты эллипсоидов, представляющих форму звезд; L 1 / L 2 – отношение светимостей компонентов или их температур .

В настоящее время известно свыше 4000 затменных переменных звезд различных типов. Минимальный известный период – около часа, наибольший – 57 лет. Информация о затменных звездах становится более полной и надежной при дополнении фотометрических наблюдений спектральными. [4,6].

 

 

Черные дыры

 

Считается, что, если масса звезды больше 2,5 , то в конце своей эволюции эта звезда превратится в черную дыру.

Черной дырой называется релятивистский объект, в котором гравитационное поле настолько сильно, что даже свет не может покинуть эту область. Это происходит, если размеры тела меньше его гравитационного радиуса

,                                    (1.7)

 

где G – постоянная тяготения Ньютона, с – скорость света, М – масса тела. Гравитационный радиус Солнца – 3 км, Земли – около 9 мм. [18]

Как возникают черные дыры?

 

Известно, что если масса ядра звезды, претерпевшего изменение химического состава из-за термоядерных реакций и состоящего в основном из элементов группы железа, превышает 1,4 , но не превосходит 3 , то происходит коллапс ядра, в результате которого звезда сбрасывает внешнюю оболочку. Это приводит к вспышке сверхновой и образованию нейтронной звезды. В такой звезде силам гравитации противостоит давление вырожденного нейтронного вещества. Радиопульсары и рентгеновские пульсары как раз и представляют собой нейтронные звезды. Первые наблюдаются как источники периодических радиоимпульсов, что связано с переработкой сильным магнитным полем нейтронной звезды энергии вращения в направленное радиоизлучение.

Рентгеновские пульсары светят за счет аккреции вещества в тесных двойных системах: магнитное поле нейтронной звезды направляет плазму на полюса, где она сталкивается с поверхностью нейтронной звезды и разогревает ее до температуры в десятки миллионов градусов. Это приводит к излучению рентгеновских квантов. Поскольку горячие рентгеновские пятна на магнитных полюсах вращающейся нейтронной звезды периодически бывают обращены к наблюдателю, он видит строго периодические пульсации интенсивности рентгеновского излучения [19]. Периодические пульсации радио- или рентгеновского излучения говорят о том, что у нейтронной звезды есть твердая поверхность, сильное магнитное поле и быстрое вращение. У черной дыры строго периодических пульсаций излучения ожидать не приходится, поскольку она не имеет ни твердой поверхности, ни магнитного поля.

Звездам, массы железных ядер которых превышают 3 , ОТО предсказывает в конце эволюции неограниченное сжатие с образованием черной дыры. Это объясняется тем, что силы гравитации, стремящиеся сжать звезду, определяются плотностью энергии, а при громадных плотностях вещества, достигаемых при сжатии ядра звезды, главный вклад в плотность энергии вносит уже не энергия покоя частиц, а энергия их движения и взаимодействия. Получается, что давление вещества при очень больших плотностях как бы само становится весомым. Чем больше давление, тем больше плотность энергии и, следовательно, больше силы гравитации, стремящиеся сжать вещество. Кроме того, при сильных гравитационных полях, согласно ОТО, становятся принципиально важными эффекты искривления пространства-времени, что также способствует неограниченному сжатию вещества. [18, 20]



2019-07-03 705 Обсуждений (0)
Затменно–двойные звезды 0.00 из 5.00 0 оценок









Обсуждение в статье: Затменно–двойные звезды

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (705)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)