Мегаобучалка Главная | О нас | Обратная связь


способ – геометрический метод



2019-07-03 232 Обсуждений (0)
способ – геометрический метод 0.00 из 5.00 0 оценок




Геометрический метод решения задач оптимизации сводится к нахождению оптимального решения задачи в одной из угловых точек многоугольника(рис. 1) для

линейной функции F = 30х1 + 40х2 → max при следующих ограничениях:

 

1 + х2 ≤ 75, (I)

х1 + х2 ≤ 30, (II) (12)

х1 +4х2 ≤ 84, (III), х1 ≥ 0, х2 ≥ 0, х2 ≥ х1

 

по смыслу задачи.

Изобразим многоугольник решений данной задачи.

II
I

 


 

С  
В
А
Область АВС, изображённая на рисунке, является областью допустимых значений функции F. Принимая во внимание систему (12), можно заметить, что самое оптимальное решение Находится в точке А, находящейся на пересечении прямых I и II, то есть координаты точки А определяются решением системы уравнений:

 

1 + х2 ≤ 75,        х1 = 12,

х1 + х2 ≤ 30, или      х2 = 18., т. е. А(12, 18)

 

максимальное значение линейной функции равно :

 

Fmax= 30*12 + 40*18 = 1080.

 

Итак, Fmax = 1080 при оптимальном решении х1 = 12, х2 = 18, т. е. максимальная прибыль в 1080 ден. ед. может быть достигнута при производстве 12 единиц продукции А и 18 единиц продукции В. Ответ: Fmax = 1080.


З аключение

 

Алгоритмы безусловной минимизации(максимизации) функций многих переменных можно сравнивать и исследовать как с теоретической, так и с экспериментальной точек зрения.

Первый подход может быть реализован полностью только для весьма ограниченного класса задач, например, для сильно выпуклых квадратичных функций. При этом возможен широкий спектр результатов от получения бесконечной минимизирующей последовательности в методе циклического покоординатного спуска до сходимости не более чем за n итераций в методе сопряженных направлений.

Мощным инструментом теоретического исследования алгоритмов являются теоремы о сходимости методов. Однако, как правило, формулировки таких теорем абстрактны, при их доказательстве используется аппарат современного функционального анализа. Кроме того, зачастую непросто установить связь полученных математических результатов с практикой вычислений. Дело в том, что условия теорем труднопроверяемы в конкретных задачах, сам факт сходимости мало что дает, а оценки скорости сходимости неточны и неэффективны. При реализации алгоритмов также возникает много дополнительных обстоятельств, строгий учет которых невозможен (ошибки округления, приближенное решение различных вспомогательных задач и т.д.) и которые могут сильно повлиять на ход процесса.

Поэтому на практике часто сравнение алгоритмов проводят с помощью вычислительных экспериментов при решении так называемых специальных тестовых задач. Эти задачи могут быть как с малым, так и с большим числом переменных, иметь различный вид нелинейности. Они могут быть составлены специально и возникать из практических приложений, например задача минимизации суммы квадратов, решение систем нелинейных уравнений и т.п.



2019-07-03 232 Обсуждений (0)
способ – геометрический метод 0.00 из 5.00 0 оценок









Обсуждение в статье: способ – геометрический метод

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (232)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)