Мегаобучалка Главная | О нас | Обратная связь


Уравнение колебаний струны.



2019-07-03 318 Обсуждений (0)
Уравнение колебаний струны. 0.00 из 5.00 0 оценок




ДИПЛОМНАЯ РАБОТА

 

Использование дифференциальных уравнений в частных производных для моделирования реальных процессов.

 

 

подпись
Выполнила:                       студентка 5-го курса

                                        дневной формы обучения

                                          Специальность 010100

                           „Математика”

                                  Прокофьевой Я. К.

                                                     Студенческий билет № 95035

 

подпись
Научный руководитель:                                 доцент, канд.                                                                                                                                                                                    

                                                          техн. наук                                                                                                                               

                                                                      Позин П.А.

 

Сочи, 2000 г.

СОДЕРЖАНИЕ

 

Введение………………………………………………………………………..……3

Глава 1. Уравнения гиперболического типа.

§1.1. Задачи, приводящие к уравнениям гиперболического типа..………………5

1.1.1. Уравнение колебаний струны..…………………………………………5

1.1.2. Уравнение электрических колебаний в проводах…….………………8

§1.2. Метод разделения переменных ……………………………………………..10

1.2.1. Уравнение свободных колебаний струны….…………………………10

Глава 2. Уравнения параболического типа.

§2.1. Задачи, приводящие к уравнениям параболического типа………………..17

2.1.1. Уравнение распространения тепла в стержне.……………………….17

2.1.2. Распространение тепла в пространстве.………………………………19

§2.2. Температурные волны.……………………………………………………….23

Глава 3. Моделирование с помощью дифференциальных уравнений в частных производных.

§3.1. Дифракция излучения на сферической частице……………………………29

Заключение………………………………………………………………………….40

Литература…………………………………………………………………………..41

 

 

ВВЕДЕНИЕ

Изучением дифференциальных уравнений в частных производных занимается математическая физика. Основы теории этих уравнений впервые были изложены в знаменитом «Интегральном исчислении» Л. Эйлера.

Классические уравнения математической физики являются линейными. Особенность линейных уравнений состоит в том, что если U и V – два решения, то функция aU + bV при любых постоянных a и b снова является решением. Это обстоятельство позволяет построить общее решение линейного дифференциального уравнения из фиксированного набора его элементарных решений и упрощает теорию этих уравнений.

Современная общая теория дифференциальных уравнений занимается главным образом линейными уравнениями и специальными классами нелинейных уравнений. Основным методом решения нелинейных дифференциальных уравнений в частных производных выступает численное интегрирование.

Круг вопросов математической физики тесно связан с изучением различных физических процессов. Сюда относятся явления, изучаемые в гидродинамике, теории упругости, электродинамике и т.д. Возникающие при этом математические задачи содержат много общих элементов и составляют предмет математической физики.

Постановка задач математической физики, будучи тесно связанной с изучением физических проблем, имеет свои специфические черты. Так, например, начальная и конечная стадии процесса носят качественно различный характер и требуют применения различных математических методов.

Круг вопросов, относящихся к математической физике, чрезвычайно широк. В данной работе рассматриваются задачи математической физики, приводящие к уравнениям с частными производными.

Расположение материала соответствует основным типам уравнений. Изучение каждого типа уравнений начинается с простейших физических задач, приводящих к уравнениям рассматриваемого типа.

Глава 1. УРАВНЕНИЯ ГИПЕРБОЛИЧЕСКОГО ТИПА

Задачи, приводящие к уравнениям гиперболического типа.

Уравнения с частными производными 2-го порядка гиперболического типа наиболее часто встречаются в физических задачах, связанных с процессами колебаний. Простейшее уравнение гиперболического типа

называется волновым уравнением. К исследованию этого уравнения приводит рассмотрение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводе, крутильных колебаний вала, колебаний газа и т.д.

Уравнение колебаний струны.

В математической физике под струной понимают гибкую, упругую нить. Напряжения, возникающие в струне в любой момент времени, направлены по касательной к ее профилю. Пусть струна длины  в начальный момент направлена по отрезку оси Оx от 0 до . Предположим, что концы струны закреплены в точках . Если струну отклонить от ее первоначального положения, а потом предоставить самой себе или, не отклоняя струны, придать в начальный момент ее точкам некоторую скорость, или отклонить струну и придать ее точкам некоторую скорость, то точки струны будут совершать движения – говорят, что струна начнет колебаться. Задача заключается в определении формы струны в любой момент времени и определении закона движения каждой точки струны в зависимости от времени.

Будем рассматривать малые отклонения точек струны от начального положения. В силу этого можно предполагать, что движение точек струны происходит перпендикулярно оси Ox и в одной плоскости. При этом предположении процесс колебания струны описывается одной функцией , которая дает величину перемещения точки струны с абсциссой x в момент t.

 

 


Рис. 1.1.

Так как мы рассматриваем малые отклонения струны в плоскости , то будем предполагать, что длина элемента струны  равняется ее проекции на ось Ox, т.е. .1 Также будем предполагать, что натяжение во всех точках струны одинаковое; обозначим его через Т.

Рассмотрим элемент струны .

     
 
x

 

 


Рис. 1.2.

На концах этого элемента, по касательным к струне, действуют силы Т. Пусть касательные образуют с осью Ox углы . Тогда проекция на ось Ou сил, действующих на элемент , будет равна . Так как угол  мал, то можно положить , и мы будем иметь:

(здесь мы применили теорему Лагранжа к выражению, стоящему в квадратных скобках).

Чтобы получить уравнение движения, нужно внешние силы, приложенные к элементу, приравнять силе инерции. Пусть  - линейная плотность струны. Тогда масса элемента струны будет . Ускорение элемента равно . Следовательно, по принципу Даламбера будем иметь:

.

Сокращая на  и обозначая , получаем уравнение движения

.                                               (1)

Это и есть волновое уравнение – уравнение колебаний струны. Для полного определения движения струны одного уравнения (1) недостаточно. Искомая функция  должна удовлетворять еще граничным условиям, указывающим, что делается на концах струны , и начальным условиям, описывающим состояние струны в начальный момент (t = 0). Совокупность граничных и начальных условий называется краевыми условиями.

Пусть, например, как мы предполагали, концы струны при  неподвижны. Тогда при любом t должны выполнятся равенства:

                                            (2’)

                                            (2’’)

Эти равенства являются граничными условиями для нашей задачи.

В начальный момент t = 0 струна имеет определенную форму, которую мы ей придали. Пусть эта форма определяется функцией f (x). Таким образом, должно быть

                                      (3’)

Далее, в начальный момент должна быть задана скорость в каждой точке струны, которая определяется функцией . Таким образом, должно быть

                                        (3’’)

Условия (3’) и (3’’) являются начальными условиями.

Замечание. В частности, может быть  или . Если же  и , то струна будет находится в покое, следовательно, .



2019-07-03 318 Обсуждений (0)
Уравнение колебаний струны. 0.00 из 5.00 0 оценок









Обсуждение в статье: Уравнение колебаний струны.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (318)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)