Мегаобучалка Главная | О нас | Обратная связь


Описание и принцип работы термоанемометрического датчика



2019-07-03 441 Обсуждений (0)
Описание и принцип работы термоанемометрического датчика 0.00 из 5.00 0 оценок




 

Термоанемометрический датчик или прибор контроля внутренней негерметичности (ПКВН) служит для контроля расхода жидкости, вытекающей через образовавшиеся зазоры агрегатов в сливные линии функциональных участков гидросистемы. Схема датчика представлена на рис. 1.3. В качестве чувствительных элементов выбраны полупроводниковые микротермосопротивления (термисторы) (2 и 4). Каждый термистор включается в электрическую схему поддержания постоянной температуры, состоящую из моста Уитстона и усилителя с обратной связью.

Термистор подогревается проходящим через него током. При появлении в магистрали потока жидкости термистор охлаждается, что приводит к изменению его сопротивления, равновесие моста нарушается и напряжение разбаланса управляет электронным усилителем так, что ток, проходящий через термистор, увеличивается, поддерживая температуру термистора постоянной. Этот ток является одновременно и диагностическим сигналом, который зависит не только от скорости течения жидкости, но и от изменения других параметров потока, обусловленных, в основном, изменением температуры (вязкость, давление, температура, расход).

В процессе дросселирования жидкости за счет введения в поток рабочего термистора (2) повышается ее температура и величина сигнала уменьшается из-за снижения теплоотдачи между термистором и потоком жидкости, т.е. возникает температурная погрешность, искажающая величину сигнала.

Для компенсации этой погрешности в измерительную схему введен дополнительный компенсационный термистор (4), сигнал которого зависит от параметров жидкости за исключением скорости (расхода). Исключение влияния скорости достигается установкой термистора (4) в замкнутую камеру (3), выполненную в корпусе датчика (5) и соединенную каналом с основным потоком.

Путем вычитания сигналов от обоих термисторов можно получить значение их расхождения, зависящее только от скорости (расхода) жидкости. Указанные операции осуществляются в специальном электронном блоке, выполненном отдельно от датчика. Электронный блок прост в эксплуатации, обладает малой массой и может переноситься оператором в любую рабочую зону на самолете. На электронном блоке смонтированы указывающие приборы для оценки расхода жидкости и ее температуры.

 

Система управления гидроцилиндром уборки и выпуска шасси

 

В дипломном проекте предлагается система управления гидроцилиндром уборки и выпуска шасси, которая отличается от применяющейся в настоящее время на самолете тем, что на гидроцилиндре уборки и выпуска шасси установлен шариковый клапан переключения, в корпусе, которого имеются два противолежащих седла для шарика с двумя отверстиями в торцах клапана (рис. 1.6).

Во время рабочего хода поршня цилиндра жидкость от насоса поступает по трубопроводу (3) в полость корпуса (5), а из него по трубопроводу (6) - в поршневую полость цилиндра (7). Из штоковой полости по трубопроводу (5) рабочая жидкость идет на слив.

При холостом ходе поршня жидкость от насоса по трубопроводу (8) поступает в штоковую полость цилиндра (7) и по трубопроводу (9) - во внутреннюю полость корпуса (5), перемещая шариковый клапан влево и преодолевая усилие пружины (1). Дойдя до упора, шарик садится на седло (2), закрывая канал (3). Часть рабочей жидкости по калиброванному отверстию (4) перетекает в трубопровод (3) и идет на слив.

При перемещении поршня жидкость из поршневой полости направляется в штоковую полость, суммируясь с жидкостью, поступающей от насоса. Поршень со штоком перемещается быстрее, чем при рабочем ходе.

Внедрение данного усовершенствования в системе уборки и выпуска шасси самолета Ту-154 позволяет уменьшить время уборки шасси, что в свою очередь, приводит к более быстрому набору высоты и экономии топлива.

 

Гидроаккумулятор

 

Основным назначением гидропневматических аккумулятором является аккумулирование гидравлической энергии в периоды пауз в потреблении ее гидравлическими агрегатами системы.

Применение гидропневматических аккумуляторов дает возможность ограничить мощность насосов средней мощностью потребителей гидравлической энергии или же обеспечить в системах с эпизодическим действием потребителей перерывы в работе насосов.

С целью повышения эффективности работы гидросистемы в дипломном проекте предлагается гидроаккумулятор, который отличается от существующего тем, что в нем седло установлено по оси штуцера и выполнено с выпуклой опорной поверхностью, плавно соприкасающейся совместно с внешней торцовой поверхностью подпружиненного запорного элемента при закрытом клапане с внутренней поверхностью корпуса. На боковой поверхности подпружиненного запорного элемента выполнены дросселирующие радиальные каналы.

Внутренняя поверхность подпружиненного запорного элемента выполнена конической.

Стабильность характеристик гидроаккумулятора и повышение эффективности его работы обеспечивается за счет полного слива жидкости, формированием направленной симметричной центральной деформации диафрагмы.

Предлагаемый аккумулятор (рис. 1.7) содержит корпус (1), упругую диафрагму (3), гидравлическую (4) и газовую (2) полости, штуцер (13) для подвода жидкости и клапан, выполненный в виде седла (8) и запорного элемента (5) со сквозным осевым каналом (11) и дросселирующими радиальными каналами (12). Запорный элемент (5) связан пружиной (14) перегородкой (6), закрепленной на штуцере (13) гайкой (7). В перегородке (6) выполнен канал (15) для прохода жидкости. Седло (8) установлено соосно штуцеру (13), закреплено на перегородке (6) и имеет выпуклую опорную поверхность (10). Внутренняя поверхность (9) запорного элемента (5) выполнена конической для создания гидродинамической составляющей силы, дополняющей упругую силу пружины (14) и направленной на удержание клапана в открытом положении.

Работает гидроаккумулятор следующим образом*, при зарядке газовой полости азотом диафрагма (3) нажимает на запорный элемент (5), который, преодолевая усилие пружины (14), спускается на седло (8), которое перекрывает канал (11) клапана. При полностью закрытом клапане опорная поверхность (10) седла (8) и поверхность запорного элемента (5) клапана плавно сопрягаются с поверхностью корпуса (1), что предохраняет диафрагму (3) от повреждения. При создании гидравлического давления большего, чем давления азота, рабочая идкость перетекает через канал (15) в перегородке (6) и открывает клапан. Жидкость через каналы (11) и (12) устремляется в полость (4), деформирует диафрагму (3). Поскольку проходное сечение канала (11) значительно больше проходного сечения всех каналов (12), основной поток жидкости проходит через осевой канал (11), вызывая направленную центральную симметричную деформацию диафрагмы (3). При расходе жидкости диафрагма (3) под давлением азота вытесняет жидкость, основной поток которой выходит через канал (11). При этом диафрагма (3) распрямляется также симметрично в обратном направлении. Когда диафрагма (3) входит в контакт с клапаном и перекрывает канал (11), незначительное количество оставшейся жидкости выходит через боковые каналы (12) и зазоры в соединения клапана с корпусом (1).




2019-07-03 441 Обсуждений (0)
Описание и принцип работы термоанемометрического датчика 0.00 из 5.00 0 оценок









Обсуждение в статье: Описание и принцип работы термоанемометрического датчика

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (441)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)