Мегаобучалка Главная | О нас | Обратная связь


Производительность макаронного пресса характеризуется количеством теста, подаваемого шнеком к матрице в единицу времени, и пропускной способностью матрицы.



2019-07-03 319 Обсуждений (0)
Производительность макаронного пресса характеризуется количеством теста, подаваемого шнеком к матрице в единицу времени, и пропускной способностью матрицы. 0.00 из 5.00 0 оценок




Таблица 2 – Производственная программа фабрики в ассортименте

Наименование изделий

Производственная программа

т/сут В % к общей выработке.
Лапша Вермишель Рожки Итого: 1,7496 1,7496 2,3328 5,832 30 30 40 100

Составление графика работы оборудования, уточнение производственной программы

Определение количества смен занятости К прессов в течение рабочего цикла (12 сут) производим по формуле (18).

 

, (18)

 

где b – количество смен занятости линий за 12 суток (b = 36 смен);

n – количество прессов, устанавливаемых на выработке данного вида изделий(n = 1);

C – процентное отношение вырабатываемого количества данного изделия к общему количеству изделий данного вида.

Количества смен занятости линий округляем до целого числа таким образом, чтобы суммарное количество смен занятости линий на выработке всех изделий определенного вида было равно b∙n.

 

, принимаем Кприн=11;

 принимаем Кприн=11;

 принимаем Кприн=14.

 

В связи с округлением необходимо произвести уточнение производственной программы.

Уточненную производственную программу найдем по формулам (19 и 20).

 

, (19)

 

 %;

 %;

 %.

, (20)

 т/сут;

 т/сут;

 т/сут.

 

Расчет сводим в таблицу 3.

 


Таблица 3 – Уточненная производственная программа

Наименование изделий

Расчетное количество смен занятости, К

Принятое количество смен занятости

Уточненная производственная программа

т/сут %
Вермишель Лапша Рожки Итого: 10,8 10,8 14,4 36 11 11 14 36 30,555 30,555 38,89 100 1,782 1,782 2,268 5,832

 

Составление графика работы линии

Строим график работы линий на 12 суток в виде таблицы (см. приложение Б).

Расчет расхода муки, яичных и молочных обогатителей (сухое молоко)

Суточный расход муки рассчитывается по формуле (21).

 

, (21)

 

где Пизд.б/д – количество изделий без добавок, вырабатываемые в сутки;

 - количество изделий с i-ой добавкой;

ai - поправочный коэффициент к плановой норме расхода муки при выработке изделий с i – ой добавкой ( для молочных ai = 110 кг/т; для яичных при использовании яичного порошка ai = 80 кг/т) ;

Hм.пл. – плановая норма расхода муки.

Количество изделий без добавок, вырабатываемое в сутки, рассчитывается по формуле (22).

 

, (22)

 


где  – i–ая суточная выработка для всех изделий;

Сб/д – процентное отношение количества изделий, вырабатываемых без добавок, к общему количеству изделий (80 % ).

Количество изделий с i – ой добавкой рассчитывается аналогично количеству изделий без добавок (Сi = 10 %).

 

 т;

 т;

 т.

 

Плановая норма расхода муки рассчитывается по формуле (23)

 

Нм.пл. = Зт + Уу + Бу, (23)

 

где Зт – затраты технологические, кг/т;

Уу – удельная норма учтенных потерь (принимаем 2 кг/т), кг/т;

Бу - удельная норма безвозвратных потерь (принимаем 1 кг/т), кг/т.

Затраты технологические рассчитываются по формуле (24).

 

, (24)

 

где Wп - плановая влажность изделий (принимаем Wп = 13 %), %;

Wм - плановая влажность муки (принимаем Wм = 14,5 %), %.

 

 кг/т.

Нм.пл. = 1017,54+2+1 = 1020,54 кг/т.

 

Суточный расход обогатителей рассчитываем по формуле (25).

 

Мi = Ндi ∙ Пi ∙ (Мм.пл. – аi) ∙ 0,001, (25)

 

где Ндi – расход i –ой добавки на 1т муки (для сухого молока 102,1 кг/т; для яичного порошка 80 кг/т).

 

Мсут=(4,6656∙1020,54+0,5832∙(1020,54-110)+0,5832∙(1020,54-80))∙0,001=5,841т/сут.

Мяич=80∙0,5832∙(1020,54-80)∙0,001 = 43,88 кг/сут = 0,04388 т/сут.

Ммол = 110∙0,5832∙(1020,54-110)∙0,001 = 58,41 кг/сут = 0,05841 т/сут.

 

Расчет количества силосов для хранения муки

По правилам проектирования макаронных фабрик при бестарном хранении муки она должна храниться в металлических силосах, емкость которых обеспечивает бесперебойную семисуточную работу фабрики.

Для хранения используем силоса бункерного типа с размерами 3,5х2х2м (аналогичные стабилизаторам-накопителям). Вместимость бункера определяем по формуле (26).

 

, т (26)

 

где V - полезный объем такого бункера, м3; V = 8,1 м3.

 

 т.

 


Принимаем, что 60 % изделий изготовляются из крупки, тогда суточный расход крупки найдем по формуле (27).

 

Мкр = 0,6 ∙ Mсут (27)

Мкр = 0,6 ∙ 5,841 = 3,505 т.

 

Принимаем, что 40 % изделий изготавливаются из полукрупки, тогда суточный расход полукрупки найдем по формуле (28).

 

Мпкр = 0,4 · Mсут (28)

Мпкр = 0,4 · 5,841 = 2,336 т.

 

Количество силосов для хранения крупки находим по формуле (29).

 

, (29)

 принимаем 6.

 

Для хранения полукрупки находим аналогично, по формуле (30).

 

, (30)

 принимаем 4.

åN = Nкр + Nпкр

åN = 6 + 4 = 10.

 

Организация упаковки готовых изделий

Упаковка всех видов изделий производится в одну смену. 60% изделий расфасовываются в мелкую тару и упаковываются в крупную тару. Для фасовки в мелкую тару будем применять фасовочную машину РТ-УМ-21-3. Для обеспечения бесперебойной работы упаковочного отделения необходимо установить 1 машину РТ-УМ-21-3.

Подбор вспомогательного технологического оборудования

Для обеспечения подготовки рассчитанного количества сырья необходимо в отделении подготовки муки установить 1 просеиватель – бурат ПБ-1,5. Для подготовки эмульсии устанавливаем 1 установку для подготовки и дозирования обогатителей Б6-ЛОА. Для дозирования муки устанавливаем 1 дозатор Ш2-ХДА. Для обеспечения виброподсушивания устанавливаем 1 подсушиватель А1-ОГК.

Организация складирования готовой продукции и расчет площади склада

Картонные короба и крафтмешки с упакованными в них изделиями устанавливаются на поддоны по 6 коробов в плане и 5 по высоте.

Ориентировочно площадь склада рассчитывается на 14 суточную работу фабрики и определяется из расчета хранения 0,4 т изделий на 1 м² и , следовательно, будет равна:

 

S = (5,832∙14)/0,4 = 204,12 м².

 

Действительная площадь склада готовой продукции определится при компоновке стеллажей.

Определение площадей подсобно-производственных помещений

Площади подсобно-производственных помещений определяются из норм технологического проектирования предприятий макаронной промышленности, мощности и технической оснащенности фабрики.

Ориентировочно приняты следующие площади, м²:

лаборатория 20

механическая мастерская и инструментальная 36

электротехническая мастерская 18

мастерская КИП и автоматики 18

помещение для дежурных слесарей и электромастеров 18

насосная 8

кладовая хозинвентаря 4

материальный склад 18

тарный цех 70

матрицемойка 18

помещение для водобаков 18

Предусмотрены помещения для размещения оборудования для кондиционирования воздуха и для размещения вентиляционных установок.

Расчет расхода воды, тепла и электроэнергии на технологические нужды. Расход воды на технологические нужды определяем по таблице 4.

 

Таблица 4 – Расчет расхода воды на технологические нужды.

Статья расхода воды Норма расхода, л Производительность, т/с, или количество потребите лей Общий расход, л/сут Максимальный расход, л/ч Температура воды, ºC Количество сточных вод, л/ч
Замес теста, л/т Мойка матриц, л/ч 270 600 5,832 3 1575 900 65,6 600 70 до 50   600
Всего     2475 665,6   600
В том числе горячей     2475 665,6    

 

Расход тепла на технологические нужды складывается из расхода тепла на сушку макаронных изделий и на подогрев воды, необходимой для замеса теста, подогрева прессующих устройств.

Максимальный часовой расход тепла на подогрев воды, расходуемой на технологические нужды Qг.в, Вт, определяется по формуле (31).

 


, (31)

 

где Gмакс – максимальный расход воды, л/ч, Gмакс = 665,6 л/ч;

tгор – температура горячей воды, tгор = 70°С;

tхол – температура холодной воды, tхол = 5°С;

c – удельная теплоемкость воды, с = 4,19 кДж/(кг∙град).

 

Qг.в = 665,6∙(70 – 5)∙4,19/3,6 = 50354,5 Вт.

 

Таблица 5 – Расчет расхода электроэнергии не технологические нужды

Наименование оборудования Количество единиц оборудования Количество электродвигателей на единице оборудования Мощность электродвигателей, кВт Общая мощность электродвигателей, кВт
Мучной склад: Просеиватель-бурат Задвижки Весы Компрессор   1 10 1 2   1 1 1 1   1 0,1 0,3 20   1 1 0,3 40
Итого       42,3
Основное производство: Одношнековый пресс Вакуум-насос Виброподсушиватель Сушилка   3 3 1 1   Комплектно 1 1 комплектно   5,06 0,6 1 11,4   15,18 1,8 1 11,4
Итого       29,38
Вспомогательное оборудование: Матрицемоечная машина Установка для дозировки и смешивания обогатителей     1 1     1 1     1,2 0,8     1,2 0,8
Итого       2
Всего       73,68

 

Расчет штата фабрики

Расчет штата фабрики представлен в таблице 6.


Таблица 6 – Расчет штата фабрики

Категория работающих, квалификация

Число работающих

Общий штат фабрики

в сменах

в сутки

подменные

1

2

3
Производственные рабочие: Оператор склада Прессовщик Сушильщик Фасовщик-упаковщик Наладчик фасовочно-упаковочного оборудования Трафаретчица тары Дозировщик обогатителей

 

-

1

1

-

-

 

-

-

  1 1 1 3 1   1 1   - 1 1 - -   - -   1 3 3 3 1   1 1   1 1 - 1 -   - -   2 4 3 4 1   1 1
Итого

2

9 2 13 3 16
Подсобно-производственные рабочие

1

4 1 6 2 8
Итого

1

4 1 6 2 8
ИТР: Директор Заместитель директора по снабжению и сбыту Ведущий специалист Инженер-энергетик Инженер-механик Начальник цеха Начальник смены Заведующий лабораторией

 

-

-

 

-

-

-

-

1

-

  1 1   1 1 1 1 1 1   - -   - - - - 1 -   1 1   1 1 1 1 3 1   - -   - - - - 1 -   1 1   1 1 1 1 4 1
Итого

1

8 1 10 1 11
СКП

-

3 - 3 - 3
Итого

-

3 - 3 - 3
МОП и ПСО

1

2 1 4 1 5
Итого

1

2 1 4 1 5
Общий штат

5

26 5 36 7 43
               

 

Численность работающих, пользующихся санпропускниками: всего 24 человека, в сутки – 19 человек, в максимальную смену – 13 человека. Численность конторского персонала 3 человека.

Расчет площадей бытовых и административно-конторских помещений

Ориентировочно площадь бытовых помещений определяем из расчета 1,75 м² на каждого, пользующегося санпропускниками, следовательно, она будет 1,75∙24 = 42 м².

Площадь административно-конторских помещений принимаем равной 42 м².

Компоновка цеха

Компоновка должна обеспечивать последовательность производственного потока, удобную связь между отдельными цехами и помещениями, сокращение путей внутрифабричной транспортировки и пробега подвижного оборудования, она должна создавать оптимальные условия работы и бытового обслуживания рабочих.

При компоновке основного производственного цеха учитывается то, что мучной склад должен примыкать к прессовому отделению, упаковочное отделение – к сушильному отделению; тарный цех, склад готовой продукции – к упаковочному отделению.

При компоновке основного производства и складов в цехах и складах предусмотрены необходимые подсобные помещения (для вентиляционных установок, кладовых, заведующего складом, начальников смен и т.п.).

В цехе основного производства размещены материальный склад, холодильная камера с помещением для подготовки обогатителей к производству, насосная, аккумуляторная с помещением для вилочных погрузчиков. Водобаки размещены выше потребителей воды, чтобы обеспечить подачу воды к ним самотеком.

Отопление

Центральное водяное или паровое отопление предусматривается во всех помещениях за исключением: котельной, материального склада, склада смазочных материалов, складов тары и ящичных комплектов.

Ориентировочно расход тепла на отопление определяется по формулам (32 и 33).


Qчас = 0,80∙V∙go∙(tс.вн –tр.о), (32)

 

где Qчас – максимальный часовой расход тепла на отопление, Вт;

V – объем отапливаемой части здания по наружному обмеру, м3, V = 3499,2 м3;

gо – удельная тепловая характеристика здания, gо = 0,36 Вт/м³;

tс.вн – средняя температура отапливаемых помещений, tс.вн = 18ºC;

tр.о – расчетная температура наружного воздуха – средняя температура наиболее холодной пятидневки, принимается по СН и П 2 А.6-62 tр.о = - 30ºC.

 

Qчас = 0,80∙3499,2∙0,36∙(18 – (-30)) = 48373 Вт.

Qгод = 0,80∙V∙go∙(tс.вн – tс.о)∙m∙n, (33)

 

где Qгод – годовой расход тепла на отопление, Вт;

tс.о – средняя температура наружного воздуха в отопительный период, принимаем по СН и П 2 А.6-62 tс.о = -10ºC;

m – число часов работы системы отопления, m = 24 часа;

n – число дней отопительного периода, по СН и П 2А.6-62 n = 180 дней.

 

Qгод = 0,80∙3499,2∙0,36∙(18 –(-10)) 24∙180 = 121899810,8 Вт = 121899,8 кВт.

 

Вентиляция и кондиционирование воздуха

При работе сушилок выделяется горячий воздух, насыщенный паром, который отрицательно сказывается на самочувствии рабочих, повышая температуру и влажность воздуха в цехе. Вентиляция и кондиционирование воздуха применяются для создания комфортных условий труда в основном производственном цехе и других помещениях.

Общее количество вентиляционного воздуха при приближенных подсчетах определяем по формуле (34).


Lв = V∙0,6∙n, (34)

 

где Lв – количество воздуха, м³/ч;

V – объем здания по наружному обмеру, м³; V =3888 м3;

0,6 – коэффициент, приводящий объем здания по наружному обмеру в суммарный объем вентилируемых помещений;

n – средняя кратность воздухообмена, n = 4 обменам в час.

 

Lв = 3888∙0,6∙4 = 9331,2 м³/ч.

 

Расход на вентиляцию определяется по формуле (35).

 

, (35)

 

где Qв – расход тепла на вентиляцию, Вт;

1,2 – плотность воздуха, кг/м³;

1,005 – весовая теплоемкость воздуха, кДж/(кг∙град);

tс.вн – средняя температура отапливаемых помещений, tс.вн = 18ºC;

tр.о – расчетная температура наружного воздуха, tр.о = -10ºC.

 

Qв = 9331,2∙1,2∙1,005∙(18-(-10))/3,6 = 87526,65 Вт.

 

Суммарная потребная мощность электродвигателей в приточных и вытяжных вентиляционных установках определится по формуле (36).

 

, (36)

 

где Nпотр – суммарная потребная мощность, кВт;

50 – среднее сопротивление приточных и вытяжных систем вентиляции, кг/м²;

102 – переводной коэффициент;

0,4 – КПД вентилятора и привода;

1,3 – средний коэффициент запаса на потребную мощность.

 

Nпотр = 1,3∙9331,2∙50/(102∙3600∙0,4) = 4,129 кВт.

 

Годовой расход тепла на вентиляцию определится по формуле (37).

 

, (37)

 

где m – продолжительность работы фабрики в сутки, m = 24 часа;

е – количество рабочих дней в отопительном периоде, по СН и П 2А.6-62 е = 180 дней.

 

Qг.в = 9331,2∙1,2∙1,005∙(18-(-10))∙24∙180/3,6 = 378115153,9 Вт = 378115,12 кВт.

 

Годовой расход энергии на вентиляцию определим по формуле (38).

 

Nг.в = Nпотр∙m∙T, (38)

 

где Т – количество рабочих дней фабрики в году, Т = 279.

 

Nг.в = 4,129∙24∙279 = 27647,784 кВт´ч.

 

Водоснабжение

Холодное водоснабжение

Вода на макаронных фабриках расходуется на технологические нужды, противопожарные нужды, хозяйственно-бытовые нужды и компенсацию потерь воды в котельной. Общий расход воды представлен в таблице 7.

Расчет потребности воды для душевых ведем из расчета, что на одну душевую приходится 5 работающих в наиболее многочисленной смене. Душ работает 3 раза в сутки по 1,5 часа, при этом расходуется 500 литров воды в час на одну сетку. Тогда на одну душевую сетку расходуется 2 250 литров в сутки. Исходя из численности рабочих, устанавливаем 2 душевые сетки, и суточный расход составит 4500 литров. Потребность в холодной воде на приготовление пищи рассчитываем из расчета 5 литров в сутки на 1 человека, в том числе 3 литра на мойку посуды. Расход воды на поливку территории берется 1,5 литра на 1 квадратный метр, компенсация воды в котельной составляет 5 % от количества воды, испаряемой в котлах.

Необходимые напоры на вводе водопровода составят:

- для производственно-хозяйственно-питьевого водозабора до верхнего крана – 2 метра;

- для подъема воды в бак на высоту 6 метров с напором при изливе 2 метра – 8 метров;

- для внутреннего пожаротушения – 18 метров.

Хозяйственный насос для подкачки воды в бак должен обеспечить подачу воды Gсек = 2,2 литра в секунду. Устанавливаем центробежный насос диаметром 50/25 миллиметров. Мощность электродвигателя насоса определится по формуле ().

 

, (39)

 

где Н – необходимый напор, м; Н = 8 м;

hуст – коэффициент полезного действия; hуст = 0,4.


 кВт.

 

Таблица 8 – Общий расход воды

  Статьи расхода Суточный расход, л Среднечасовой расход, л Коэффициент неравномерности Максимальный часовой расход, л Секундный расход, л Годовой расход, м³
Технологические нужды Противопожарные нужды Хозяйственно-бытовые нужды: приготовление пищи на раковины в цехах душевые сливные бачки унитазов поливка территории 15974,4   -   215   2000 4500 2250     900,0 665,5   -   9   83,3 187,5 93,75     37,5 1,47   -   2   5 8 3     8 987,43   -   18   416,5 1500 281,25     300 0,185   25,00   0,005   0,116 0,42 0,078     0,08 4457   -   60   588 1255,5 627,75     251,1
Итого 25839,4 1076,65   3494,18 25,844 7209,35
Компенсация потерь воды в котельной 1291,97 53,8 1,25 174,7 1,29 360,5
Всего 27131,4 1130,45   3668,88 27,2 7569,85

 

Противопожарный насос должен обеспечивать подачу двух струй по 12,5 литра в секунду каждая. Устанавливаем центробежный насос диаметром 65/50 миллиметров с мощностью электродвигателя насоса:

 

 кВт.

 

Горячее водоснабжение

Горячая вода используется на технологические нужды, а также на мойку столовой посуды, на мойку полов, в душевых и умывальниках. Часовой расход тепла на нагрев воды Qг.в, Вт, рассчитывается по формуле (40).

 

, (40)

 

где gmax – максимальный часовой расход горячей воды, л;

К – коэффициент, учитывающий теплопотери, К = 1,1-1,2;

tгор – температура горячей воды, °С;

tхол – температура холодной воды, °С; tхол = 5°С;

с – удельная теплоемкость воды, кДж/(кг∙град).с = 4,19 кДж/(кг∙град).

Расход воды, используемой на технологические и хозяйственно-бытовые нужды, и расчет тепла на ее подогрев сведен в таблицу 9.

Таблица 9 – Расчет расхода горячей воды и тепла

 

Статья расхода Температура горячей воды, °С Средний часовой расход воды, л Максимальный часовой расход воды, л Средний часовой расход тепла, Вт Максимальный часовой расход тепла, Вт
Приготовление теста Мойка матриц Мойка столовой посуды Мойка инвентаря и оборудования Раковины в цехах Душевые 70 50   50   60 25 37 65,6 25   38,5   30 83,3 187,5 65,6 100   231   60 461,5 1500 5459 1440   2218   2113 2132 7682 5459 8322   19223   4993 38405 124827
Всего   430 2918,1 21044 201229

 

Максимальный часовой расход воды gmax, л/ч, имеющей температуру 70°С, определяется по формуле (41).

 


, (41)

 

где

 

tгор = 70°С;

tхол = 5°С.

Нагрев воды производится в баке, как правило, при помощи парового змеевика, поверхность которого F, м², определяется по формуле (42).

 

, (42)

 

где Qобщ – количество тепла, подаваемого от источника теплоснабжения, Вт;

k – коэффициент теплопередачи, Вт/(м²∙град); k = 870 Вт/(м²∙град);

Dt – средняя разность температур, °С, определяется по формуле (43).

 

, (43)

 

где tср – температура насыщенного пара, поступающего в змеевик, °С; tср = 143 °С.

 

 °С.

 м².


Суммарная емкость баков горячей и холодной воды:

 

1130,45∙8 + 430∙8 = 12483,6 л = 12,5 м³

 

Емкость бака горячей воды:

 

2660/977,81 = 2,72 м³

 

Емкость бака холодной воды:

 

12,5 – 2,72 = 9,78 м³

 

При полезной высоте баков 5 м площадь бака холодной воды будет:

 

9,78/5 = 1,956 м²,

 

а бака горячей воды:

 

2,72/5 = 0,544 м².

 

Минимальная высота помещения для баков:

 

5 + 0,15 + 0,25 + 0,50 = 5,8 м,

 

(здесь 0,15 – запас высоты бака; 0,25 – высота подставки под баки; 0,50 – расстояние от верха бака до перекрытия).

Годовой расход тепла на горячее водоснабжение Qгод.общ, Вт, определяется по формуле (44).

 


Qгод.общ = Qср.час.общ∙m∙T, (44)

 

где Qср.час.общ – средний часовой расход тепла на горячее водоснабжение, Вт;

m – число часов работы в сутки, m = 24;

Т – количество рабочих дней в году, Т = 279.

 

Qгод.общ = 21044∙24∙279 = 140910624 Вт = 140910,624 кВт

 

Канализация

По характеру загрязнения сточные воды делятся на условно чистые и загрязненные. К условно чистым стокам относятся сточные производственные воды от прессов после охлаждения прессующих устройств, от ванн для разогрева меланжа, от вакуумных насосов, от водонапорных баков при их переливе. К загрязненным (фекально-хозяйственным) стокам относятся стоки от душевых, уборных, умывальников, раковин, моечных ванн, трапов. Количество сточных вод определяется исходя из общего расхода воды по таблице 10.

 

Таблица 10– Расчет количества сточных вод

Статья расхода

Количество сточных вод, л

средне-часовое коэффициент неравномерности максимально-часовое суточ-ное
Мойка матриц Раковины в цехах Душевые Сливные бачки унитазов Мытье посуды и оборудование 25 83,3 187,5 93,75 68,5 4 5 8 3 4 100 416,5 1500 281 281 600 2000 4500 2250 1644
Всего 458,05 - 2578,5 10994

 

Условно чистые воды в цехе отсутствуют.

Количество загрязненных сточных вод в сутки: 10994 л, максимальночасовое: 2578,5 л.

 


3. Конструкторская часть

 

3.1 Краткий обзор техники и технологии процесса экструзии

 

Экструзией называется процесс переработки продуктов в экструдере путем размягчения или пластификации и придания им формы продавливанием через экструзионную головку, сечение которой соответствует конфигурации изделия. Входе процесса под действием значительных скоростей сдвига, высоких температуры и давления происходит переход механической энергии в тепловую, что приводит к различным по глубине изменениям в качественных показателях перерабатываемого сырья (денатурация белков, клейстеризация крахмала и другие биохимические изменения). Характер и глубина изменений и их влияние на качество продукции зависят от режима процесса экструзии и его длительности.

Для производства экструдированных продуктов с определенными функциональными свойствами применяют три основных способа экструдирования пищевого сырья:

- холодная экструзия - возможны только механические изменения в материале вследствие медленного его перемещения под давлением и формование этого продукта с образованием заданных форм.

При холодной экструзии массовая доля влаги в сырье составляет W = 30...60%;

- теплая экструзия - сухие компоненты сырья смешивают с определенным количеством воды (W = 20...30%) и подают в экструдер, где наряду с механическим их подвергают еще и тепловому воздействию. Продукт подогревается из вне. Получаемый экструдат отличается небольшой плотностью, незначительным увеличением в объеме, пластичностью, а также ячеистым строением. Иногда экструдату необходима дополнительная обработка - подсушивание;

- горячая экструзия - процесс протекает при высоких скоростях и давлениях, значительном переходе механической энергии в тепловую, что приводит к различным по глубине изменениям в качественных показателях материала. Кроме того, может иметь место регулируемый подвод тепла как непосредственно в продукт, так и через наружные стенки экструдера. Массовая доля влаги в сырье при горячей экструзии составляет W = 10...20%, а температура превышает 120°С.

В настоящее время экструдирование широко применяется в макаронной, кондитерской, хлебопекарной, крахмалопаточной, пищеконцентратной, мясной, рыбной и комбикормовой отраслях промышленности.

Компании США, ЕС и Японии на экструдерах разных конструкций вырабатывают пасты, сухие зерновые завтраки, макаронные изделия, бисквиты, хрустящие хлебцы, снеки, продукты детского и диетического питания, кондитерские изделия (шоколад, конфеты, печенье, жевательную резинку), текстурированные растительные протеины, модифицированные крахмалы, ингредиенты кормов для домашних животных, птиц, рыб, воздушные крупяные (кукурузные, рисовые, перловые и т.д.) и картофельные палочки, сухие супы, соусы, приправы, сухие смеси для напитков и многое другое. В процессе экструзионной обработки перерабатываемый материал подвергается целому ряду фазовых превращений - из хрупкого стеклообразного состояния в высокоэластичное и затем в вязкотекучее.

Классификация шнековых экструдеров

Анализ техники и технологии экструдирования западных стран позволил систематизировать важнейшие типы этих машин и классифицировать их по различным признакам, что, на наш взгляд, наиболее полно отражает сущность экструзионного процесса и является важным вспомогательным материалом при проектировании современных экструзионных установок для выработки новых видов продукции.

По типу основного рабочего органа экструдеры подразделяют на одно - и двухшнековые, многошнековые, дисковые, поршневые, валковые, винтовые, шестеренные и комбинированные (рисунок 2). Конструкции экструдеров также могут быть классифицированы: по частоте вращения рабочего органа - на нормальные и быстроходные; по конструктивному исполнению - на стационарные, с вращающимся корпусом, с горизонтальным расположением рабочего органа, с вертикальным расположением рабочего органа; по физическим признакам - с коротким шнеком (автогенные), с большим уклоном режущей кромки матрицы, с незначительным уклоном режущей кромки матрицы.

 

Рисунок 2 - Классификация экструдеров

 

Кроме того, экструдеры рекомендуется классифицировать по геометрической форме, механическим, функциональным или термодинамическим характеристикам, поскольку они оказывают влияние на химические и структурные характеристики экструдированных продуктов. Особое значение имеют такие параметры, как количество тепловой энергии, образующейся в процессе экструдирования за счет механического преобразования энергии; температура во время ведения процесса; влажность экструдируемой массы.

Более детально рассмотрим классификацию шнековых экструдеров, так как они нашли наибольшее применение в промышленности (рисунок 3).

 

Рисунок 3 - Классификация шнековых экструдеров

 

Одношнековые экструдеры имеют как свои достоинства, так и недостатки (рисунок 4). Они проще в изготовлении, относительно дешевы, возможно восстановление их рабочего органа, но по некоторым параметрам сложны в эксплуатации.

Недостатками одношнековых экструдеров являются плохое смешивание обрабатываемого продукта, отсутствие принудительного транспортирования и самоочистки. В таких экструдерах чаще возникают скачки давления из-за накопления продукта; переход с одного сырья на другое затруднен тем, что камеру и шнек необходимо очищать, а значит, нужно разбирать экструдер. Более высокие расходы по эксплуатации одношнековых машин связаны с длительными простоями при чистке, большими трудозатратами и объемом работ по обслуживанию.

Двухшнековые машины (см. рисунок 4), несмотря на сложность конструкции (вследствие чего потребляют на 20...50% больше энергии, а стоимость их выше на 60%), трудоемкость в использовании и значительный износ рабочих органов, обеспечивают более высокое качество продукции. Применение двухшнекового экструдера не требует предварительной гидротермической обработки продукта, что упрощает производственный процесс. Преимущество двухшнекового экструдера - точное объемное дозирование, лучшее перемешивание продукта, эффект самоочистки, а также способность перерабатывать смеси с высоким содержанием жира и сахара.

 

Рисунок 4 - Схемы шнеков одно- и двухшнековых экструдеров

 

Применение двухшнековых (многошнековых) экструдеров в пищевой промышленности имеет значительное преимущество и гораздо большие перспективы перед одношнековыми. Тем не менее, использование одношнековой экструзии в производстве продуктов питания на данный момент крайне необходимо и дальнейшее изучение этого процесса является весьма актуальной задачей.

Конструкции шнековых прессов

ПрессЛПЛ-2М (рисунок 5.) - распространенная конструкция пресса отечественного производства. Пресс состоит из горизонтального одношнекового экструдера 6, однокамерного тестосмесителя 2 и дозировочного устройства 1, размещенных на общей станине.

Внутри экструдера установлен однозаходный прессующий шнек длиной 1400 мм, диаметром 120 мм, с шагом витка 100 мм. На корпусе экструдера закреплена головка 3 для установки круглой матрицы 4. Снизу к головке двумя винтовыми домкратами прижимается кольцо матрицедержателя. Винт одного из домкратов служит осью, относительно которой в отжатом положении матрицедержатель может быть повернут с целью установки или снятия матрицы.

В средней части шнек имеет разрыв винтовой плоскости, где встроена шайба, обеспечивающая движение теста по перепускному каналу 5, предназначенному для удаления воздуха из теста.

 

Рисунок 5 - Пресс ЛПТ-2М.

 


Дозировочное устройство сострит из шнекового дозатора муки и роторного дозатора воды, который имеет крыльчатку с карманами. При вращении ротора в баке вода заполняет карманы и при дальнейшем повороте через продольные отверстия вала сливается в тестосмеситель пресса.

Вакуумная система пресса предназначена для обеспечения остаточного давления (разрежения) воздуха в перепускном канале прессующего корпуса с целью удаления паровоздушной смеси и получения плотной структуры полуфабриката.

Основными недостатками пресса Л ПЛ-2М являются недостаточная продолжительность замеса и низкая эффективность вакуумирования полуфабриката. ПрессЛПШ-500 (рисунок 6.) имеет более совершенную конструкцию, так как оснащен трехкамерным тестосмесителем. Вакуумирование полуфабриката в нем происходит не в корпусе шнека, а после первой камеры смесителя. Пресс состоит из следующих узлов: дозировочного устройства 1, тестосмесителя 2 с приводом 3, прессующего шнека 4 с приводом 8, головки 5 для круглых матриц с механизмом их смены и обдувочного устройства 6. Все узлы смонтированы на станине 7.

Дозировочное устройство 1 состоит из шнекового дозатора муки и черпако



2019-07-03 319 Обсуждений (0)
Производительность макаронного пресса характеризуется количеством теста, подаваемого шнеком к матрице в единицу времени, и пропускной способностью матрицы. 0.00 из 5.00 0 оценок









Обсуждение в статье: Производительность макаронного пресса характеризуется количеством теста, подаваемого шнеком к матрице в единицу времени, и пропускной способностью матрицы.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (319)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)