Мегаобучалка Главная | О нас | Обратная связь


Организация технологического процесса



2019-07-03 201 Обсуждений (0)
Организация технологического процесса 0.00 из 5.00 0 оценок




 

Водоснабжение и водоотведение являются важнейшими санитарно- техническими системами, обеспечивающими нормальную жизнедеятельность населения и всех отраслей народного хозяйства страны. Используя природные водные источники, эти системы снабжают водой различных потребителей, а также обеспечивают очистку сточных вод, их отведение и возврат природе, защиту и охрану водоисточников от загрязнения и истощения.

Системы водоснабжения и водоотведения представляют собой сложные инженерные сооружения, устройства и оборудование, в значительной степени определяющие уровень благоустройства зданий, объектов и населенных пунктов, рентабельность и экономичность промышленных предприятий.

Эта отрасль обладает рядом технологических особенностей:

1. Постоянство (неизменное состояние технологических этапов в независимости от размеров технологий);

2. Непрерывность (реализация технологических этапов в строгой повторяющей последовательности).

В зависимости от вида обслуживаемого объекта системы водоснабжения подразделяются на городские, промышленные, сельскохозяйственные, железнодорожные. В зависимости от вида потребителей системы выполняют функции хозяйственно-питьевых, производственных, противопожарных, поливочных водопроводов.

В целом можно говорить о том, что от стабильного функционирования данных систем зависит нормальная работа города, предприятий, здоровье и безопасность жителей.

«Расчетные расходы воды определяют с учетом числа жителей населенного места и норм водопотребления. Нормой хозяйственно-питьевого водопотребления в населенных местах называют количество воды в литрах, потребляемой в сутки одним жителем на хозяйственно-питьевые нужды. Норма водопотребления зависит от степени благоустройства зданий и климатических условий» [2; С.10].

Таблица 3. Нормы водопотребления

Степень благоустройства зданий Нормы на одного жителя среднесуточная (за год), л/сут
Застройка зданиями, оборудованными внутренним водопроводом и канализацией: без ванн с ваннами и местными водонагревателями с централизованным горячим водоснабжением     125-160 160-230 230-270

 

В течение года и в течение суток вода для хозяйственно-питьевых целей расходуется неравномерно (летом расходуется больше, чем зимой; в дневные часы – больше, чем в ночные) [5; С. 145].

Расчетный (средний за год) суточный расход воды на хозяйственно-питьевые нужды в населенном пункте определяют по формуле

 

Qсут m = qж ×Nж/1000, м3/сут;                                       

Qсут m = 300×85000/1000 = 25500 м3/сут.

 

где qж – удельное водопотребление; Nж – расчетное число жителей.

Расчетные расходы воды в сутки наибольшего и наименьшего водопотребления, м3/сут,

 

Qсут max = Kсут max × Qсут m;                      Qсут min = Kсут min × Qсут m.          

Коэффициент суточной неравномерности водопотребления Kсут следует принимать равным

 

Kсут max = 1,1 – 1,3

Kсут min = 0,7 – 0,9

Большие значения Kсут max принимают для городов с большим населением, меньшие – для городов с малым населением. Для Kсут min – наоборот.

 

Qсут max = 1,2×25500 = 30600 м3/сут;

Qсут min = 0,8×25500 = 20400 м3/сут.

 

Расчетные часовые расходы воды, м3/ч,

 

qч max = Kч max × Qсут max/24

qч min = Kч min × Qсут min/24

 

Коэффициент часовой неравномерности водопотребления определяют из выражений

 

Kч max = amax × bmax

Kч min = amin × bmin        

 

где a - коэффициент, учитывающий степень благоустройства зданий:

amax = 1,2-1,4; amin = 0,4-0,6 (меньшие значения для amax и большие для amin принимают для более высокой степени благоустройства зданий);

b - коэффициент, учитывающий число жителей в населенном пункте.

 

Kч max = 1,2×1,1 = 1,32

Kч min = 0,6×0,7 = 0,42

qч max = 1,32×30600/24 = 1683 м3

qч min = 0,42×20400/24 = 357 м3

 

По рассчитанному коэффициенту часовой неравномерности Kч max = 1,32 задаемся вероятным графиком распределения суточных расходов по часам суток.

По данным таблицы распределения суточных хозяйственно-питьевых расходов по часам суток при разных коэффициентах часовой неравномерности для населенных пунктов для Kч max = 1,32 строим график суточного водопотребления и совмещаем с этим графиком графики подачи воды насосами 1 и 2 подъема.

Качество природной воды зависит от наличия в ней различных веществ неорганического и органического происхождения. Содержание в воде нерастворенных веществ характеризуется мутностью в мг на литр. Присутствие в воде гумусовых веществ характеризуется цветностью в градусах по так называемой платинокобальтовой шкале. Содержащиеся в воде соли кальция и магния придают ей жесткость. Загрязненность воды бактериями характеризуются количеством бактерий, содержащихся в 1 куб.см. воды.

«Методы очистки воды зависят от качества природной воды, потребляемого расхода и требований к ее качеству. При очистке речной воды для хозяйственно-питьевых нужд наиболее широко применяют осветление, обесцвечивание и обеззараживание воды (дезинфекция)». [15; С.165]

Более глубоко и более эффективно осветление воды происходит при коагулировании и пропуске через «взвешенный слой» хлопьев, ранее отделенных от воды в осветлителях. Для глубокого осветления воды применяют ее фильтрование через песчаные фильтры. Коагулирование с последующим отстаиванием и фильтрованием, а затем хлорированием воды применяют также для устранения цветности и снижения окисления воды. Обеззараживание воды производят хлорированием, озонированием, ультрафиолетовым облучением. Для снижения жесткости (умягчения), обессоливания и дегазации воды применяют химические и физико-химические методы обработки воды. Их применяют одновременно с отстаиванием и фильтрованием. Коагулирование осуществляют для ускорения процесса осветления и обесцвечивания воды.

Дозу коагулянта Дк, мг/л, в расчете для цветных вод – по формуле.

 

Дк=4×Ц

 

где Ц – цветность обрабатываемой воды, град.

При одновременном содержании в воде взвешенных веществ и цветности принимают большую из доз коагулянта. Дозу флокулянтов (в дополнение к дозам коагулянтов) следует принимать: полиакриламида (ППА) по безводному продукту при вводе перед отстойниками. Флокулянт вводят в воду после коагулянта.

Дозу хлорсодержащих реагентов (по активному хлору) при предварительном хлорировании и для улучшения хода коагуляции и обесцвечивания воды, а также для улучшения санитарного состояния сооружений следует принимать 3-10 мг/л. Реагенты вводят за 1-3 мин до ввода коагулянтов. Дозы подщелачивающих реагентов Дщ, мг/л, необходимых для улучшения процесса хлопьеобразования, определяют по формуле:

 

Дщщ×(Дкк – Що) + 1        

 

где Дк – максимальная, в период подщелачивания, доза безводного коагулянта, мг/л;

ек – эквивалентная масса коагулянта (безводного), мг/мг-экв, принимаемая для

 

Al2(SO4)3 - 57; FeCl3 – 54; Fe2(SO4)2 – 67;

 

Кщ – коэффициент, равный для извести (по СаО) – 28; для соды (по Na2CO3) – 53;

Що – минимальная щелочность воды, мг-экв/л.

Реагенты вводят одновременно с вводом коагулянтов. Например: потребность в сутки максимального водопотребления

 

Ск = 1,05 Qсут max×Дк/1000=1,05×58500×400/1000=24570 кг.     

 

здесь 0,05 Qсут max – объем воды, необходимый для собственных нужд очистной станции.

Доза флокулянта (ПАА) – по таблице.

ДПАА=0,2-0,5 мг/л, принимаем ДПАА=0,4 мг/л.

Потребность в сутки максимального водопотребления:

 

СПАА=1,05 Qсут max×ДПАА/1000=1,05×58500×0,4/1000=24,57 кг.

 

Доза хлорсодержащих реагентов (по активному хлору) при предварительном хлорировании. ДCl=3-10 мг/л, принимаем ДCl=3-5 мг/л.

Потребность хлорсодержащих реагентов (по активному хлору) в сутки максимального водопотребления:

 

СCl=1,05 Qсут max×ДCl/1000=1,05×58500×5/1000=307,13 кг

 

Доза подщелачиваемых реагентов (извести)

 

Дщ=28(30/57-0,2)+1=10 мг/л.

 

Потребность в сутки максимального водопотребления

 

Сщ=1,05 Qсут max×Дщ/1000=1,05*58500*10/1000=614,25 кг.

 

Качество природной воды зависит от наличия в ней различных веществ неорганического и органического происхождения. Содержание в воде нерастворенных веществ характеризуется мутностью в мг на литр. Присутствие в воде гумусовых веществ характеризуется цветностью в градусах по так называемой платинокобальтовой шкале. Содержащиеся в воде соли кальция и магния придают ей жесткость. Загрязненность воды бактериями характеризуются количеством бактерий, содержащихся в 1 куб.см. воды.

«Методы очистки воды зависят от качества природной воды, потребляемого расхода и требований к ее качеству. При очистке речной воды для хозяйственно-питьевых нужд наиболее широко применяют осветление, обесцвечивание и обеззараживание воды (дезинфекция)». [15; С.165]

Более глубоко и более эффективно осветление воды происходит при коагулировании и пропуске через «взвешенный слой» хлопьев, ранее отделенных от воды в осветлителях. Для глубокого осветления воды применяют ее фильтрование через песчаные фильтры. Коагулирование с последующим отстаиванием и фильтрованием, а затем хлорированием воды применяют также для устранения цветности и снижения окисления воды. Обеззараживание воды производят хлорированием, озонированием, ультрафиолетовым облучением. Для снижения жесткости (умягчения), обессоливания и дегазации воды применяют химические и физико-химические методы обработки воды. Их применяют одновременно с отстаиванием и фильтрованием. Коагулирование осуществляют для ускорения процесса осветления и обесцвечивания воды.

Дозу коагулянта Дк, мг/л, в расчете для цветных вод – по формуле.

 

Дк=4×Ц

 

где Ц – цветность обрабатываемой воды, град.

При одновременном содержании в воде взвешенных веществ и цветности принимают большую из доз коагулянта. Дозу флокулянтов (в дополнение к дозам коагулянтов) следует принимать: полиакриламида (ППА) по безводному продукту при вводе перед отстойниками. Флокулянт вводят в воду после коагулянта.

Дозу хлорсодержащих реагентов (по активному хлору) при предварительном хлорировании и для улучшения хода коагуляции и обесцвечивания воды, а также для улучшения санитарного состояния сооружений следует принимать 3-10 мг/л. Реагенты вводят за 1-3 мин до ввода коагулянтов. Дозы подщелачивающих реагентов Дщ, мг/л, необходимых для улучшения процесса хлопьеобразования, определяют по формуле:

 

Дщщ×(Дкк – Що) + 1        

 

где Дк – максимальная, в период подщелачивания, доза безводного коагулянта, мг/л;

ек – эквивалентная масса коагулянта (безводного), мг/мг-экв, принимаемая для

 

Al2(SO4)3 - 57; FeCl3 – 54; Fe2(SO4)2 – 67;

 

Кщ – коэффициент, равный для извести (по СаО) – 28; для соды (по Na2CO3) – 53;

Що – минимальная щелочность воды, мг-экв/л.

Реагенты вводят одновременно с вводом коагулянтов. Например: потребность в сутки максимального водопотребления

 

Ск = 1,05 Qсут max×Дк/1000=1,05×58500×400/1000=24570 кг.     

 

здесь 0,05 Qсут max – объем воды, необходимый для собственных нужд очистной станции.

Доза флокулянта (ПАА) – по таблице.

ДПАА=0,2-0,5 мг/л, принимаем ДПАА=0,4 мг/л.

Потребность в сутки максимального водопотребления:

 

СПАА=1,05 Qсут max×ДПАА/1000=1,05×58500×0,4/1000=24,57 кг.

 

Доза хлорсодержащих реагентов (по активному хлору) при предварительном хлорировании

ДCl=3-10 мг/л, принимаем ДCl=3-5 мг/л.

Потребность хлорсодержащих реагентов (по активному хлору) в сутки максимального водопотребления:

 

СCl=1,05 Qсут max×ДCl/1000=1,05×58500×5/1000=307,13 кг

 

Доза подщелачиваемых реагентов (извести)

 

Дщ=28(30/57-0,2)+1=10 мг/л.

 

Потребность в сутки максимального водопотребления

 

Сщ=1,05 Qсут max×Дщ/1000=1,05*58500*10/1000=614,25 кг.       

 

Качество природной воды зависит от наличия в ней различных веществ неорганического и органического происхождения. Содержание в воде нерастворенных веществ характеризуется мутностью в мг на литр. Присутствие в воде гумусовых веществ характеризуется цветностью в градусах по так называемой платинокобальтовой шкале. Содержащиеся в воде соли кальция и магния придают ей жесткость. Загрязненность воды бактериями характеризуются количеством бактерий, содержащихся в 1 куб.см. воды.

«Методы очистки воды зависят от качества природной воды, потребляемого расхода и требований к ее качеству. При очистке речной воды для хозяйственно-питьевых нужд наиболее широко применяют осветление, обесцвечивание и обеззараживание воды (дезинфекция)». [15; С.165]

Более глубоко и более эффективно осветление воды происходит при коагулировании и пропуске через «взвешенный слой» хлопьев, ранее отделенных от воды в осветлителях. Для глубокого осветления воды применяют ее фильтрование через песчаные фильтры. Коагулирование с последующим отстаиванием и фильтрованием, а затем хлорированием воды применяют также для устранения цветности и снижения окисления воды. Обеззараживание воды производят хлорированием, озонированием, ультрафиолетовым облучением. Для снижения жесткости (умягчения), обессоливания и дегазации воды применяют химические и физико-химические методы обработки воды. Их применяют одновременно с отстаиванием и фильтрованием. Коагулирование осуществляют для ускорения процесса осветления и обесцвечивания воды.

Дозу коагулянта Дк, мг/л, в расчете для цветных вод – по формуле.

 

Дк=4×Ц

 

где Ц – цветность обрабатываемой воды, град.

При одновременном содержании в воде взвешенных веществ и цветности принимают большую из доз коагулянта. Дозу флокулянтов (в дополнение к дозам коагулянтов) следует принимать: полиакриламида (ППА) по безводному продукту при вводе перед отстойниками. Флокулянт вводят в воду после коагулянта.

Дозу хлорсодержащих реагентов (по активному хлору) при предварительном хлорировании и для улучшения хода коагуляции и обесцвечивания воды, а также для улучшения санитарного состояния сооружений следует принимать 3-10 мг/л. Реагенты вводят за 1-3 мин до ввода коагулянтов. Дозы подщелачивающих реагентов Дщ, мг/л, необходимых для улучшения процесса хлопьеобразования, определяют по формуле:

 

Дщщ×(Дкк – Що) + 1        

 

где Дк – максимальная, в период подщелачивания, доза безводного коагулянта, мг/л;

ек – эквивалентная масса коагулянта (безводного), мг/мг-экв, принимаемая для

 

Al2(SO4)3 - 57; FeCl3 – 54; Fe2(SO4)2 – 67;

 

Кщ – коэффициент, равный для извести (по СаО) – 28; для соды (по Na2CO3) – 53;

Що – минимальная щелочность воды, мг-экв/л.

Реагенты вводят одновременно с вводом коагулянтов. Например: потребность в сутки максимального водопотребления

 

Ск = 1,05 Qсут max×Дк/1000=1,05×58500×400/1000=24570 кг.     

 

здесь 0,05 Qсут max – объем воды, необходимый для собственных нужд очистной станции.

Доза флокулянта (ПАА) – по таблице.

ДПАА=0,2-0,5 мг/л, принимаем ДПАА=0,4 мг/л.

Потребность в сутки максимального водопотребления:

 

СПАА=1,05 Qсут max×ДПАА/1000=1,05×58500×0,4/1000=24,57 кг.

 

Доза хлорсодержащих реагентов (по активному хлору) при предварительном хлорировании

ДCl=3-10 мг/л, принимаем ДCl=3-5 мг/л.

Потребность хлорсодержащих реагентов (по активному хлору) в сутки максимального водопотребления:

 

СCl=1,05 Qсут max×ДCl/1000=1,05×58500×5/1000=307,13 кг

 

Доза подщелачиваемых реагентов (извести)

 

Дщ=28(30/57-0,2)+1=10 мг/л.

 

Потребность в сутки максимального водопотребления

 

Сщ=1,05 Qсут max×Дщ/1000=1,05*58500*10/1000=614,25 кг.       

 

Методы обеззараживания воды составляют четыре основные группы: термический (кипячение), химический (хлор, озон), олигодинамический (воздействие ионов благородных металлов) и физический (ультразвук, ультрафиолетовые лучи). Наибольшее распространение получили методы второй группы. В качестве окислителей используют диоксид хлора, двуокись хлора, озон, йод, перманганат калия, перекись водорода, гипохлорит натрия и кальция. Из перечисленных окислителей на практике отдают предпочтение хлору, озону, гипохлориту натрия.

Хлор опасен при транспортировании и использовании, его утечки могут вызвать отравление людей. Кроме того, при хлорировании образуются хлорорганические соединения, в том числе – диоксид – сильнейший мутаген. При наличии в воде фенолов образуются хлорфенолы, обладающие токсичными свойствами и неприятным запахом.

Достоинство озонирования в том, что, уничтожая, бактерии, споры, вирусы, он разрушает растворенные и взвешенные в воде органические вещества. Это позволяет использовать озон не только для обеззараживания, но и для обесцвечивания и дезодорации воды. При этом природные свойства воды не изменяются. Избыток озона (в отличие от хлора) не только не ухудшает, но и значительно улучшает качество воды – устраняет цветность, привкусы и запахи. В случае только обеззараживания фильтрованной воды доза озона составляет 1-2 мг/л. Если же озон применяется для обесцвечивания и обеззараживания воды, его доза может достигать 4-5 мг/л.

В процессе очистки вода должна пройти ряд очистных сооружений, в которых осуществляются принятые методы очистки. Наиболее распространенные технологические схемы очистки речной воды для хозяйственно-питьевых целей:

1. Глубокое осветление, обесцвечивание и обеззараживание воды путем коагулирования и последовательного осветления воды в отстойниках и на фильтрах. Природная вода насосами 1 подъема 1 подается в смеситель 3, куда одновременно подаются реагенты, приготовленные в реагентном цехе 2.

 

Рис. 1. Технологическая схема очистки воды

 

После смешения с реагентами вода поступает в камеру хлопьеобразования 4, где происходит процесс агломерации взвешенных (мутность) и коллоидальных (цветность) частиц в крупные хлопья. Затем вода поступает в отстойники 5, в которых движется с малой скоростью (2-10 мм/с). При этом основная масса образовавшихся хлопьев отделяется от обрабатываемой воды и выпадает в осадок. Из отстойников воду подают на фильтры 6 для глубокого осветления путем пропуска ее через толщу песчаной загрузки. В процессе очистки в толще фильтров накапливаются загрязнения. Для их удаления фильтры выключают из работы и промывают.

Осветленную воду обеззараживают и собирают в резервуарах чистой воды 7, где обеззараживание завершается в результате контакта с дезинфекторами (хлором, озоном). Вода, подаваемая в сеть, не должна содержать озона, так как он вызывает коррозию труб и оборудования. Поэтому воду, обработанную озоном, выдерживают в резервуарах до завершения расходования озона.[7; С.95]

2. Технологическая схема, представленная на рисунке 2, имеет лишь одно сооружение для осветления воды – контактные осветлители (песчаные фильтры с движением воды снизу вверх).

В них коагуляция взвесей и осветление ды происходит одновременно.


Рис.2. Технологическая схема очистных сооружений

 

Укрупнение частиц в хлопья происходит не в свободном объеме, а на поверхности зерен фильтрующего материала под действием сил прилипания (контактная коагуляция). Общий объем очистных сооружений по этой схеме значительно меньше, чем по предыдущей. Эту схему можно применять при малом содержании в воде взвешенных веществ – до 150-200 мг/л.

По рассмотренным технологическим схемам обесцвечивание воды происходит в результате сорбции коллоидных гумусовых веществ, обусловливающих цветность воды. Скорые фильтры, как правило, на очистных станциях применяют не менее двух сооружений каждого типа. Этим обеспечивается непрерывность работы очистных станций при авариях и эксплуатационных отключениях сооружений.

 

Рис. 3. Расход воды от суточного в %

 

Взаимное высотное расположение сооружений предусматривают с таким расчетом, чтобы движение воды от сооружения к сооружению было самотечным. Разность отметок уровней воды в расположенных рядом сооружениях должна быть равна потерям напора при движении воды между сооружениями по трубопроводам и лоткам, а также в самих сооружениях. Общие потери напора по технологической схеме обычно составляют 3,5-6 м. А теперь рассмотрим технологию подачи и очистки воды в цехе № 17 ОАО ЧМЗ.

 

Водозаборные сооружения цеха № 17 совмещены с насосной станцией подъёма и служат для забора речной воды из реки «Чепца» и равномерной подачи её в течение суток на станцию очистки. По степени надёжности электроснабжения водозаборные сооружения относятся к потребителям первой категории. Створ водозаборных сооружений расположен на плесовом участке, имеющем глубину при минимальных уровнях воды около 4- 4.5 м.

Учитывая стеснённые условия при небольших размерах плёсового участка реки, для борьбы с шугой, улучшения транзита донных наносов и льда, а также для повышения процента отбора воды из реки, приняты водозаборные сооружения с самовсасывающимся ковшом.

Водоприёмная часть водозаборных сооружений и насосная станция 1 подъёма сблокированы в одном здании. Водозаборные сооружения ограждены забором из колючей проволоки. Охрана расположена непосредственно в помещении сеток насосной станции 1 подъёма. Подача речной воды от насосной станции 1 подъёма до водоочистных сооружений осуществляется по двум напорным водоводам. Водоводы на пойменных участках - стальные диаметром 800 мм, в сухих фунтах - железобетонные напорные трубы диаметром 900 мм.

Насосная станция находится в автоматическом режиме под контролем машиниста насосных установок. Круглосуточное обслуживание водозаборных сооружений осуществляется сменным оперативным персоналом участка. Нормальный режим работы насосной станции 1 подъёма: два рабочих и два резервных насосных агрегата. Каждый насосный агрегат может быть рабочим или резервным. Пуск основных насосных агрегатов осуществляется на закрытый затвор.

Для нормальной работы водозаборных сооружений производится очистка решеток оголовка и самотечных линий от засорения, плавающими и взвешенными в воде крупными предметами и водорослями, наличие которых в большом количестве способно сократить подачу воды, а следовательно, уменьшить производительность водозаборных сооружений.

Техническое обслуживание и ремонт механического, электрического оборудования и оборудования КИПиА - персоналами механической, энергетической служб цеха и персоналом участка КИПиА.

В состав водозаборных сооружений входят:

1. Водоприёмный ковш.

2. Водоприёмный оголовок.

3. Насосная станция 1 подъёма, сблокированная с водоприёмником.

Водоприёмный ковш представляет собой искусственно созданный водоём и используется для борьбы с шугой, частичного осветления воды, забираемой из реки, от взвеси. На сооружениях смонтирован малый самопромывающийся ковш с низовым входом, расположенным под углом 35° к линии основного потока воды в реке. Отметка дна ковша обеспечивает высоту порога водозаборных отверстий над дном - 0.5 м, запаса их под нижней поверхностью льда, равного 0.3 м при минимальном уровне воды в реке.

Низовая дамба затапливается в весенний паводок. Откосы и гребень переливной дамбы укреплены каменной наброской. Речной затопленный оголовок предназначен для отбора воды из реки. Водоприёмный оголовок - бетонный с металлической оболочкой. Состоит из двух секций. Длина каждой секции 16 м. Дно оголовка выровнено камнем.

Каждая секция состоит из каркаса, обшитого листовой сталью толщиной 3 мм, одной вихревой и шести бункерных камер. Бункерные камеры закрыты фильтрующими деревянными пакетными решётками. На двух секциях оголовка установлено 12 решёток размером 1200 х 310 мм.

Речная вода в бункерные камеры поступает через окна. Из бункерных камер вода поступает в вихревые камеры. Для защиты оголовка от ледохода, отвода плавающих веществ оголовок защищён металлической шпунтовой стенкой. Оголовок соединён с насосной станцией первого подъёма двумя самотечными трубопроводами диаметром 800 мм, защищёнными под насыпью насосной станции стальными кожухами.

Для промывки самотечных трубопроводов на сооружениях смонтирован промывной водовод диаметром 400 мм. Водоприёмная часть водозаборных сооружений и насосная станция 1 подъёма сблокирована в одном здании.

Подъёмная часть представляет собой круглый опускной железобетонный колодец диаметром 18.0 м и глубиной 14.0 м. Амплитуда колебания уровней - 8.0 м. Внутренней перегородкой подъёмная часть разделена на водоприёмную часть и машинный зал.

Водоприёмная часть разделена на две секции. В каждой секции для предварительной очистки воды установлена вращающая сетка с внешнелобовым подводом воды. Степень загрязнения сетки определяют по сопоставлению уровней перед и после вращающейся сетки.

В машинном зале станции (отметка - 13.60 м) смонтированы:

Основные насосные агрегаты - 4 шт.

Дренажные насосы - 2 шт.

Всасывающие и напорные трубопроводы с запорной и регулирующей арматурой.

Всасывающая и напорная гребёнки.

Шкафы управления ( 1 ЩУ - 4 ЩУ ).

Характеристика основных насосных агрегатов:

тип центробежный                     Д 2500-62

производительность, С м3 /час 2500

напор, Н м в. ст.                        62

электродвигатель асинхронный: тип А4-400-У6

мощность, N кВт                                 500

число оборотов, п об/мин         985

Характеристика дренажных насосов:

тип центробежный С                 569

производительность, С м 3 /час 120

напор, Н м.в. ст.                        19

 

Дренажные насосы служат также для откачки из камер водоприёмника при их опорожнении. Подача воды на промывку сеток осуществляется от напорных водопроводов по трубопроводу диаметром 100 мм с дросселированием напора воды до 25 м. Промывка сеток осуществляется поочерёдно, автоматически, в зависимости от перепада уровней воды до и после сеток - вручную. Для отвода воды от промывки сеток смонтирован трубопровод диаметром 200 мм. Вода после лотка для отвода промывной воды сбрасывается в реку ниже (по течению) водозаборных сооружений.

В надземной части водозаборных сооружений имеется:

1.Помещение вращающихся сеток.

2.Помещение распредустройства РУ-6 кВ.

3.Трансформаторная подстанция.

4.Лифт пассажирский г. п. 350 кг.

Для измерения расхода на напорных водоводах установлены приборы ДРКС с врезными датчиками и со вторичным прибором Диск-250.

Водозаборные сооружения оборудованы системой телемеханики, осуществляющейся по кабельной линии (АВВГ 2.5 х 37, два кабеля марки КУПВ 0.5 х 19). С диспетчерской водоочистных сооружений осуществляется телеуправление насосных агрегатов, напорными задвижками. На диспетчерский пункт водоочистных сооружений с водозаборных сооружений передаются следующие сигналы: насосный агрегат № 1-4 «Включен», «Отключен».

Телеизмерением охвачены следующие параметры: ток в цепи насосных агрегатов; расход воды на напорных линиях; давление воды в напорных водоводах.

Для монтажа и демонтажа вращающихся сеток, задвижек и затворов на самовсасывающих линиях в помещении сеток смонтирован подвесной ручной кран грузоподъёмностью 3.2 тн. Водозаборные сооружения оборудованы системами хозяйственно-питьевого водопровода, канализации, вентиляции, освещением, электродвигателем, монтажной площадкой, площадками для обслуживания агрегатов и трубопроводов.



2019-07-03 201 Обсуждений (0)
Организация технологического процесса 0.00 из 5.00 0 оценок









Обсуждение в статье: Организация технологического процесса

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (201)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.013 сек.)