Мегаобучалка Главная | О нас | Обратная связь


КВАНТОВЫЕ ЭФФЕКТЫ В ЧЕРНЫХ ДЫРАХ



2019-07-03 243 Обсуждений (0)
КВАНТОВЫЕ ЭФФЕКТЫ В ЧЕРНЫХ ДЫРАХ 0.00 из 5.00 0 оценок




Квантовое рождение частиц во внешнем поле. До сих пор при описании взаимодействия вещества с черными дырами мы игнорировали квантовые особенности взаимодействия. Квантовые эффекты действительно несущественны для черных дыр с массой порядка солнечной или больше. Однако для черных дыр малой массы эти эффекты не только не малы, но приводят к качественному изменению картины эволюции черной дыры.

Согласно современным, квантовым представлениям физический вакуум, т. е. состояние, в котором отсутствуют реальные частицы, является довольно сложным образованием. В вакууме непрерывно происходит образование, взаимодействие и уничтожение виртуальных (короткоживущих) частиц. В отсутствие внешних полей вакуум устойчив, т. е. все протекающие в нем процессы не приводят к появлению реальных (долгоживущих) частиц. При наличии внешнего поля часть виртуальных частиц, взаимодействуя с ним, успевает приобрести достаточную энергию, чтобы стать реальными. Этот процесс приводит к эффекту квантового рождения частиц из вакуума внешним полем.

Вероятность рождения частиц во внешнем статическом поле можно оценить следующим образом. Пусть напряженность поля Г и заряд рождающихся частиц равен g. Согласно соотношению неопределенности время жизни виртуальной пары частиц, обладающих энергией Е, порядка -h/E. За это время частицы могут удалиться друг от друга на характерное расстояние l0~-hc/E. Вероятность обнаружить пару таких частиц на большем расстоянии / пропорциональна ехр (—lE/-he). Эта же величина дает вероятность рождения реальной пары частиц с энергией E, если расстояние l таково, что работа gГl, произведенная на нем полем, равна Е. Поэтому вероятность рождения частиц в поле напряженности Г пропорциональна ехр(—E2/-hcgГ).

Рождение частиц в заряженных и вращающихся черных дырах. Приведенные выше рассуждения полностью справедливы для процессов рождения заряженных частиц в однородном электростатическом поле. Это поле рождает из вакуума электрон-позитронные пары и пары других заряженных частиц. В 1970 г. М. А. Марков и В. П. Фролов обратили внимание, что квантовый эффект рождения частиц из вакуума в поле заряженной черной дыры приводит к уменьшению заряда черной дыры практически до его уничтожения.

Аналогичное явление происходит, как показали в 1972 г. Я. Б. Зельдович и А. А. Старобинский, во вращающихся черных дырах. Напомним, что рассмотренное в предыдущем разделе явление суперрадиации имело чисто классический характер. Это проявляется, в частности, в том, что коэффициент усиления не зависит от постоянной Планка. Как и другие классические процессы, явление суперрадиации можно описать на квантовом языке. При подобном описании явление суперрадиации состоит в увеличении числа квантов в отраженной волне по сравнению с числом квантов в волне падающей. Действительно, энергия волны заданной частоты при классическом описании пропорциональна квадрату ее амплитуды, а при квантовом — числу квантов. Поэтому увеличение амплитуды волны при неизменной частоте означает увеличение общего числа квантов поля.

Рассмотренное классическое явление суперрадиации имеет квантовый аналог: спонтанное рождение частиц из вакуума в гравитационном поле вращающейся черной дыры. Поскольку в физическом вакууме равно нулю лишь среднее значение поля, а сами поля флуктуируют около нулевых значений, то амплитуда тех вакуумных флуктуации, для которых выполняется условие усиления, непрерывно возрастает, что проявляется в рождении реальных квантов поля.

Эффект рождения квантов в поле вращающейся черной дыры можно описать и несколько иным образом, при котором роль эргосферы проявляется более отчет- • лнво. Для того чтобы произошло рождение реальной частицы, вылетающей из черной дыры без нарушения закона сохранения энергии, необходимо, чтобы вторая из частиц виртуальной пары приобрела отрицательную энергию. Это оказывается возможным, если она находится в эргосфере и обладает определенным значением углового момента.

Работу, необходимую для превращения виртуальных частиц в реальные, совершает гравитационное поле черной дыры. Рожденные частицы, вылетающие из черной дыры, обязательно обладают угловым моментом, совпадающим по направлению с угловым моментом черной

дыры. Поэтому вне вращающейся черной дыры появляется поток частиц, уносящих энергию и момент черной дыры. Характерная частота этого излучения порядка угловой скорости OMEGA вращения черной дыры, а полный поток энергии порядка dE/dt~-hOMEGA2. При заданной массе М максимальное значение угловой скорости достигается у экстремальной черной дыры, для которой J~GM2/c, Эта,угловая скорость равна OMEGA = c3/2GM. Поэтому скорость истечения энергии из такой вращающейся черной дыры не превосходит величину

dE/dt<~ -h(c3/GM)2~4,3*10-17 эрг/сС/М)2,

где Mc =2*1033 г — масса Солнца.

Приведенная оценка показывает, что для черны дыр, возникающих при коллапсе звезд, подобные квантовые эффекты крайне малы даже для быстро враща-ющихбя чёрных дыр. Заметим, что приведенные формулы касаются лишь безмассовых частиц (фотонов, нейтрино, гравитонов), скорость рождения массивных частиц существенно меньше.

Важной особенностью описанных процессов рождения частиц в заряженных и вращающихся черных дырах является то, что в результате их площадь поверхности черной дыры не уменьшается, на рождение частиц расходуется запасенная черной дырой электростатическая энергия или энергия вращения. После исчерпания этой энергий процесс излучения должен был бы прекратиться, а сама черная дыра превратиться в шварцшиль-довскую (т. е. в черную дыру, для которой Q = J = 0).

Эффект Хокинга. В 1974 г. английский физик, профессор Кэмбриджского университета Стивен Хокинг показал, что квантовый процесс рождения частиц происходит и в нейтральных невращающихся черных дырах. В еврей работе С. Хокинг рассмотрел безобидный на первый взгляд вопрос о том, сколько частиц рождается в процессе коллапса, приводящего к образованию шварцшильдовской черной дыры. Распространенное до работы С. Хокинга мнение сводилось к следующему. В процессе коллапса гравитационное поле переменно и, как всякое переменное поле, рождает частицы. Однако с точки зрения внешнего наблюдателя коллапсирующее тело довольно быстро застывает у гравитационного радиуса, а образующееся статическое поле не способно рождать частицы, поскольку в отличие от керровской черной дыры у шварцшильдовской дыры отсутствуют состояния с отрицательной энергией для частиц вне горизонта событий. Поэтому наблюдатель, изучающий явление коллапса, зарегистрирует некоторое конечное число частиц, образующихся при коллапсе и выходящих наружу. Общее число рожденных частиц зависит от конкретных характеристик коллапса, и почти все рожденные частицы должны возникать на активной стадии коллапса.

Результат, полученный С. Хокингом, оказался совсем другим. Он показал, что наряду с незначительным числом частиц, рожденных переменностью поля и зависящим от деталей коллапса, квантовые эффекты приводят также к излучению стационарного потока частиц. Спектр и интенсивность этого потока определяются только параметрами образовавшейся стационарной дыры. Более того, оказалось, что черная дыра рождает и излучает частицы (фотоны, нейтрино, гравитоны и др.) в точности так же, как если бы вместо черной дыры имелось черное тело, нагретое до температуры Т= = hkappa/2pick, где кappa — поверхностная гравитация черной дыры { Для невращающейся черном дыры эта температура T~10-7 К (масса Солнца/М). Поэтому для черных дыр, возникающих при коллапсе звёзд; этот эффект крайне незначителен.}.

Странный на первый взгляд вывод С, Хокинга о тепловом характере излучения объясняется особенностями квантовых явлений в статическом гравитационном поле и в конечном счете связан с принципом эквивалентности, выделяющим гравитацию из всех остальных взаимодействий. Поскольку любая частица вне шварцшильдовской черной дыры имеет положительную энергию, то квантовый процесс рождения частиц в поле такой черной дыры происходит так, что одна из частиц пары обязательно “рождается” под горизонтом. Эти “частицы” невидимы для наблюдателя на бесконечности, и при описании любых наблюдений вне черной дыры по состояниям этих “частиц” происходит усреднение. Ины-ми словами, наблюдатель вне черной дыры всегда имеет дело только с частью "полной квантовой системы, и в соответствии с этим излучение черной дыры описывается матрицей плотности, даже если первоначально (дообразования черной дыры) мы имели дело с чистым квантовомеханическим состоянием.

Появление матрицы плотности означает, что наблюдатель с определенной вероятностью может застать систему в любом из ее возможных состояний. Говорят, что система находится в состоянии теплового равновесия при температуре Т (т. е. описывается тепловой матрицей плотности), если соответствующая вероятность w (omega) дается термодинамической формулой Гиббса: w~ ~ехр (—E/kT), где Е — энергия состояния. • Чтобы “объяснить” тепловой характер излучения черной дыры, попробуем применить к этому случаю приведенную в начале раздела формулу, описывающую вероятность ш рождения частиц внешним полем: w~ ~ехр(—E2/hcgГ). {здесь и везде h с чертой} Как уже упоминалось ранее при обсуждении общих свойств гравитационного взаимодействия, отличительной особенностью этого взаимодействия, связанной с принципом эквивалентности, является пропорциональность гравитационного заряда g полной энергии частицы Е. Поэтому вероятность рождения частицы в статическом гравитационном поле имеет гиб-бсовский вид: w~ехр(—E/kT0), при этом эффективная “температура” Т0 оказывается пропорциональной “напряженности” гравитационного поля. В случае черной дыры в качестве Т0 входит величина T=hkapa/2pick, пропорциональная поверхностной гравитации kappa играющая роль напряженности гравитационного поля на поверхности черной дыры.

Квантовое излучение и поляризация вакуума около черных дыр. Строго говоря, спектр частиц, рожденных черной дырой, слегка отличен от теплового. Это отли-чие вызвано тем, что рожденные частицы, прежде чём достичь отдаленного наблюдателя, испытывают дополнительное рассеяние на гравитационном поле черной дыры. Однако если черную дыру поместить в резервуар с тепловым излучением с температурой, равной хокин-говской температуре черной дыры, то установится равновесие. Указанное выше рассеяние на гравитационном поле не мешает установлению равновесия, поскольку частицы, падающие внутрь черной дыры, испытывают точно такое же рассеяние, как и выходящие частицы. Равновесие черной дыры с тепловым излучением в термостате является неустойчивым. Малые флуктуации, приводящие к превышению потока, падающего на черную дыру излучения над уходящим потоком, приводят к. понижению температуры черной дыры и к дополни тельному уменьшению уходящего потока излучения. Аналогичным образом случайное уменьшение массы черной дыры приводит к ее нагреванию и тем самым к дальнейшему уменьшению ее массы. Эта неустойчи вость тесно связана со свойством отрицательности теп лоемкости, присущим гравитационно-связанным систе мам.

Возможность равновесия черной дыры с тепловым излучением невольно порождает следующий вопрос. Хорошо известно, что если газ находится в тепловом равновесии в гравитационном поле, то температура его должна быть выше в тех областях, где гравитационный потенциал меньше. В статическом гравитационном поле условие равновесия имеет вид:

T(x)|gtt (x)|1/2= const,

где Т(х) — локальная температура газа в точке X, Применяя это условие, нетрудно убедиться, что равновесная локальная температура излучения около черной дыры равна:

Т = Т(1- 2GM/c2r)1/2.

Здесь Тхокинговская температура черной дыры. Если попытаться теперь оценить плотность энергии излучения e (epsilon), используя закон Стефана—Больцмана е~T4, то можно было бы прийти к выводу, что в равновесии плотность излучения вблизи черной дыры неограниченно растет, или, иными словами, такое равновесие невозможно. Однако приведенный вывод несостоятелен. Ошибка кроется в том, что закон е ~ Т4 справедлив только, если параметры термодинамической системы мало изменяются на расстояниях порядка lambda~hc/kT? В случае черной дыры эта характерная длина имеет порядок гравитационного радиуса, и вблизи горизонта событий закон е~T4 не применим. Вычисления показывают, что плотность энергии вблизи горизонта конечна Ч всего лишь в несколько раз превышает плотность энергии теплового излучения на бесконечности.

Следует отметить, что внешнее поле, изменяя характер движения вакуумных виртуальных частиц, поляризует вакуум. Это приводит, в частности, к тому, что во внешнем поле наряду с вкладом реальных частиц в цензор энергии —- импульса имеется дополнительный вклад, связанный с виртуальными частицами. Вблизи черной дыры оба вклада одного порядка и их трудно разделить.

. Квантовый взрыв черных дыр. Квантовое испарение изолированной черной дыры приводит к уменьшению ее массы, а следовательно, и площади. Причина этого “нарушения” теоремы Хокинга в том, что в отличие от классической теории квантовая теория допускает появление таких состояний, в которых плотность энергии отрицательна. Именно это имеет место вблизи черных дыр. Поток частиц из черной дыры на бесконечность, уносящих положительную энергию, сопровождается по-тркрм отрицательной энергии, связанной с поляризацией вакуума, внутрь черной дыры, приводящим к уменьшению ее массы. В результате черная дыра испаряется.

За единицу времени черная дыра с массой М грамм излучает энергию

dE/dt ~ 1046 эрг/с N*M-2.

В этом выражении N — число сортов частиц, которые излучает черная дыра. Черная дыра с эффективной температурой Т излучает все элементарные частицы, масса покоя которых не превосходит kT/c2. Для черных дыр с массой больше 1017 г возможно испускание только безмассовых частиц: фотонов, нейтрино и гравитонов. По мере испарения черной дыры уменьшается ее масса и соответственно растет температура. При этом появляется возможность излучения все более и более массивных частиц Интенсивность излучения растет как вследствие уменьшения .массы дыры М, так и из-за роста числа сортов частиц N. В результате квантового испарения черная дыра с массой М грамм выгорает за время t~10-27cM3. Для черных дыр с массой около 1015 г это время жизни оказывается порядка 1010 лет, т. е. порядка времени, прошедшего с начала расширения Вселенной. Время жизни черных дыр, возникающих при коллапсе звезд, более чем на 50 порядков превосходит возраст Вселенной.

Процесс квантового испарения особенно значителен для малых черных дыр с массой меньшей или порядка 1015 г. Последний этап эволюции такой черной дыры протекает очень бурно и, по сути дела, представляет взрыв, при котором в результате распада оставшейся черной дыры с массой порядка 3*109 г за последнее 0,1 с выделяется энергия 1030 эрг. Хотя по астрофизическим масштабам эта энергия не очень велика, однако это явление довольно внушительно и уникально, так как при этом в крайне малой области пространства размером меньше радиуса нуклона, освобождается энергия, эквивалентная энергии одновременного взрыва 1 миллиона 1 мегатонных водородных бомб. Наличие вращения и заряда у малой черной дыры мало изменяет описанную картину. В этом случае излучение Хокинга с температурой T=hkappa/2pick сопровождается дополнительным излучением, уносящим угловой момент дыры и ее заряд, так что через довольно короткое время черная дыра становится практически невращающейся и нейтральной.

ПЕРВИЧНЫЕ ЧЕРНЫЕ ДЫРЫ

Существуют ли малые черные дыры? До работы С. Хокинга черные дыры могли считаться образцами идеальных захоронений вещества во Вселенной. Попавшее в них вещество не только нельзя извлечь, но даже память о его свойствах стирается, отсекаясь мощным гравитационным полем. Энергию этого вещества можно было считать безвозвратно утерянной. После работы С. Хокинга представление о черных дырах претерпело существенное изменение. Черные дыры в результате квантового распада со временем возвращают запасенную энергию обратно. Они могут служить своеобразным преобразователем вещества из одной формы в дру“ гую. Дело в том, что черные дыры с одинаковой массой, образованные, например, при коллапсе нейтрального вещества и антивещества, неотличимы и при квантовом распаде излучают равное число частиц и античастиц { Это свойство, вообще говоря, может -нарушаться, если при квантовом испарении рождаются частицы, которые затем распада-птся с нарушением СP-ннвариантности.}. В процессе образования и последующего испарения черных дыр могут нарушаться законы сохранения барием-ного и лептонного зарядов.

При обсуждении этих и многих других удивительных следствий явления квантового испарения черных дыр сталкиваются, однако, со следующим чрезвычайно важным вопросом: могут ли существовать в природе малые черные дыры, поскольку следствия, вытекающие из эффекта Хокинга, касаются главным образом черных дыр с малой массой?

В 1966 г. советские ученые Я. Б. Зельдович и И. Д. Новиков и в 1971 г, С. Хокинг обратили внимание на то, что, хотя в настоящее время образование черных дыр с массой, меньшей солнечной, невозможно, на раннем этапе развития Вселенной малые черные дыры могли возникать из первоначальных неоднородностей крайне плотного расширяющегося вещества. Хотя давление вещества в ту эпоху также было крайне велико, перепады давления, а следовательно, и силы, с ними связанные, практически отсутствовали. Расширение более плотной области происходит медленнее и вскоре сменяется сжатием. Распределение вещества при этом становится заметно неоднородным, однако для возникновения значительного градиента давления требуется время порядка отношения размера области к скорости звука в среде. Если процесс сжатия происходит столь быстро, что градиент давления не успевает возникнуть, ничто не препятствует образованию черной дыры. Подобные черные дыры, образующиеся на раннем этапе эволюции Вселенной, получили название первичных. На стадии, когда плотность вещества равна р, могут возникать черные

дыры с массой M~- sqrt(c6/pG3) -~ 1,6 • 1042 г2р-1/2(плотность р в граммах на кубический сантиметр).

Стандартный сценарий эволюции Вселенной. Прежде чем перейти к обсуждению космологических следствий эффекта квантового испарения первичных черных дыр, остановимся (по необходимости кратко) на основных этапах развития Вселенной. В настоящее время средняя плотность вещества по Вселенной крайне мала. Она составляет всего лишь от З*10-31 до 10-29 г/см3. Однако известный факт разбегания галактик указывает на то, что в отдаленном прошлом средняя плотность вещества была гораздо выше? Существование реликтового излучения с температурой 2,7 К свидетельствует в пользу того, что в более ранние времена вещество во Вселенной было сильно нагрето.

Известные в настоящее время данные наблюдений (высокая степень — до 0,01% — изотропности реликтового излучения, изотропность распределения галактики радиоисточников, довольно высокая степень однородности распределения галактик и их систем в масштабах больше 100 мегапарсек) позволяют заключить, что в среднем при усреднении по масштабам порядка 100 мегапарсек распределение вещества во Вселенной довольно однородно и изотропно. С другой стороны, существование галактик и их систем указывает на то, что в-меньших масштабах имеются значительные отклонения от равномерного распределения.

Все эти факты находятся в соответствии с принятой в настоящее время стандартной моделью “горячей Вселенной”. Согласно этой модели на ранних этапах Вселенная представляла собой в среднем однородное и изотропное распределение горячей материи, расширение которой началось примерно 10—20 млрд. лет тому назад. Формально (если, не задумываясь, верить в неограниченную применимость теории Эйнштейна) это расширение началось из состояния вещества с бесконечной плотностью. Однако по крайней мере при плотности, большей чем pg ~ c5/hG2~ 1093 г/см3, классическая теория гравитации неприменима из-за большой величины квантово-гравитационных эффектов. Обычные представления о структуре и свойствах пространства-времени, по-видимому, требуют значительного пересмотра при значениях кривизны порядка 1066 см-2, соответствующего этой плотности. Поэтому фактически обычные классические уравнения Эйнштейна описывают эволюцию Вселенной, начиная с некоторого момента времени ta, в который вещество имело большое, но конечное значение плотности ро. Обычно полагают t0 ~ 10-43 с, ро <~ 1093 г/см3. Распределение плотности вещества в этот момент предполагается в среднем однородным и изотропным.

При временах t0 - 10-43 с, квантово-гравитационная эра сменяется адронной эрой, длящейся до 10-4 с. Расширение Вселенной приводит к уменьшению плотности вещества в течение адронной эры до ядерной, а температура падает до 1013 К. В конце этой эры происходит аннигиляция адронов с антиадронамп.

Позднее, 10-4 с <~ t<~ 10 с (лептонная эра), вследствие понижения температуры последовательно аннигилируют сначала мю+мю--пары, .а затем и е+е--пары, и сначала для мюонного, а затем для электронного нейтрино вещество во Вселенной становится практически прО

зрачным — происходит “отрыв” нейтринного реликтового излучения. В начале следующей, радиационно-до-минирующей эры (10 с<~ t <~ 1012 с), по прошествии около 3 мин от начала расширения нейтроны и протоны образуют ионизованный газ, состоящий в основном из водорода (70—75%, по массе) и гелия (25—30% по массе). В конце этой эры температура понижается до 4000 К, происходит рекомбинация водорода, резко возрастает прозрачность водородного газа для фотонов и происходит “отрыв” реликтового фотонного излучения. В это же время из-за резкого смягчения уравнения состояния, вызванного рекомбинацией, становится возможным развитие гравитационных неустойчивостей, приводящих к образованию галактик и звезд.

Первичные черные дыры и начальные возмущения.

Процессы образования первичных черных дыр с массой, меньшей солнечной, могли происходить лишь в адрон-ную эру, когда средняя плотность вещества была достаточно высока. Первичных черных дыр образуется тем больше, тем больше была амплитуда начальных неоднородностей и чем “мягче” уравнения состояния вещества в момент их образования. Дальнейшая судьба первичных черных дыр зависит от их массы. Черные дыры с массой от 1015 до 1033 г могли бы доживать до настоящего времени и оказаться “живыми свидетелями” процессов, происходивших во времени 10-23—10-5 с после “большого взрыва”.

В 1966 г. Я. Б. Зельдович и И. Д. Новиков обратили внимание на то, что изменения плотности вещества в черных дырах и плотности окружающего их ультрарелятивистского газа различны. Вследствие этого даже если на вещество, заключенное в подобные черные ды-

ры, приходится значительная доля общего количества вещества в настоящее время, то в момент образования этих черных дыр доля вещества, попавшего в них, была крайне мала.

Дело в том, что совокупность подобных черных дыр

можно рассматривать как газ частиц без давления. При увеличении объема системы в а раз плотность такого газа падает как а-1. С другой стороны, окружающее черные дыры горячее вещество представляет собой ультрарелятивистский газ, давление которого р связано с плотностью энергии-е соотношением: р =е/3. При-увс-

 

Р и с. 8. Ограничение на допустимую долю р массы оещества, попадающего в первичные черные дыры с массой М (в граммах), в момент их образования

личении объема в а раз происходит дополнительное уменьшение плотности энергии, связанное с работой силы давления, в результате уменьшение плотности энергии происходит по закону а-4/3 Даже при равной плотности энергии в черных дырах и в веществе в настоящее время, в момент образования черных дыр в далеком прошлом плотность окружающего вещества по указанной причине должна значительно превосходить плотность вещества в черных дырах.

Первичные черные дыры с меньшей массой, образовавшиеся ранее 10-23 с после начала расширения Вселённой, уже распал-ись к настоящему времени в результате квантового испарения. Тем не менее, наблюдая наличке или отсутствие продуктов их распада, можно найти ограничения на возможное число и спектр масс подобных черных дыр. Первичные черные дыры с массой около 5*1014 г должны распадаться в настоящее время. Вспышки при квантовом взрыве таких черных дыр давали бы потоки у-квантов с энергией порядка 200 МэВ. Наблюдения на gamma-телескопах не дают указаний на подобные вспышки с нужными свойствами. С другой стороны, из наблюдаемого значения плотности фонового у-излучення в этом диапазоне можно заключить, что если бы подобные черные дыры существовали и были равномерно распределены во Вселенной, то на кубический парсек пространства их приходится менее десяти тысяч.

Результаты многочисленных работ, посвященных анализу космологических ограничений на допустимое число первичных черных дыр в широком диапазоне их масс, представлены на рис, 8. Так как число и спектр

масс первичных черных дыр тесно связаны со спектром начальных неоднородностей и уравнением состояния на ранних этапах, то появляется привлекательная возможность получения весьма ценной информации о состоянии вещества при сверхвысоких температурах и давлениях и о строении Вселенной в крайне отдаленном прошлом { Заметим, что данные о реликтовом фотонном излучении позволяют непосредственно судить о свойствах Вселенной в момент отрыва излучения от вещества (во времени ~1012 с). О более ранних этапах (во времена ~ 1 с) косвенную информацию дает соотношение между количеством синтезированного гелия, дейтерия и водб-рода во Вселенной}. Основной вывод, который удается сделать при анализе полученных ограничений на число первичных черных дыр во Вселенной, состоит в том, что в широком диапазоне масштабов неоднородности во Вселенной на ранних стадиях расширения были поразительно малыми.



2019-07-03 243 Обсуждений (0)
КВАНТОВЫЕ ЭФФЕКТЫ В ЧЕРНЫХ ДЫРАХ 0.00 из 5.00 0 оценок









Обсуждение в статье: КВАНТОВЫЕ ЭФФЕКТЫ В ЧЕРНЫХ ДЫРАХ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (243)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)