Пузырьковая сортировка с просеиванием
Сортировка
Сортировка является наиболее фундаментальной алгоритмической задачей в теории вычислительных машин и систем по двум различным причинам. Во-первых, сортировка – это полезная операция, которая эффективно решает многие задачи, с которыми встречается каждый программист. Во-вторых, были разработаны буквально десятки различных алгоритмов сортировки, каждый из которых основывается на определенной хитрой идее или наблюдении. Большинство примеров разработки алгоритмов ведет к интересным алгоритмам, включающим «разделяй и властвуй», рандомизацию, инкрементную вставку и продвинутые структуры данных. Из свойств этих алгоритмов следует множество интересных задач по программированию. Ключом к пониманию сортировки является понимание того, как она может быть использована для решения многих важных задач программирования. Рассмотрим некоторые случаи применения сортировки. · Проверка уникальности. Как мы можем проверить, все ли элементы данного набора объектов S являются различными? Отсортируем их либо в возрастающем, либо в убывающем порядке, так что любые повторяющиеся объекты будут следовать друг за другом. После этого один проход по всем элементам с проверкой равенства S[i]=s[i+1] для любого 1≤i<n решает поставленную задачу. · Удаление повторяющихся элементов. Как мы можем удалить все копии, кроме одной, любого из повторяющихся элементов S? Сортировка и чистка снова решают задачу. Обратите внимание, что чистку проще всего производить, использую два индекса – back, указывающий на последний элемент в очищенной части массива, и i, указывающий на следующий элемент, который нужно рассмотреть. Если S[back]<>S[i], увеличиваем back и копируем S[i] в S[back]. · Распределение приоритетов событий. Предположим, что у нас имеется список работ, которые необходимо сделать, и для каждой определен свой собственный срок сдачи. Сортировка объектов по времени сдачи (или по аналогичному критерию) расположит работы в том порядке, в котором их необходимо делать. Очереди по приоритетам удобны для работы с календарями и расписаниями, когда имеется операции вставки и удаления, но сортировка удобна в том случае, когда набор событий не меняется в ходе выполнения. · Медиана/выбор. Предположим, что мы хотим найти k-й по величине объект в S. После сортировки объектов в порядке возрастания нужный нам будет находится в ячейке S[k]. В определенных случаях этот подход может быть использован для нахождения наименьшего, наибольшего и медианного объекта. · Расчет частоты. Какой элемент чаще всего встречается в S? После сортировки линейный проход позволяет нам посчитать число раз, которое встречается каждый элемент. · Восстановление первоначального порядка. Как мы можем восстановить первоначальное расположение набора объектов, после того как мы переставили их для некоторых целей? Добавим дополнительное поле к записи данных объекта, такое что i-й записи это поле равняется i. Сохранив это поле во время всех перестановок, мы сможем отсортировать по нему тогда, когда нам потребуется восстановить первоначальный порядок. · Создание пересечения/объединения. Как мы можем рассчитать пересечение или объединение двух контейнеров? Если они оба отсортированы, мы может объединить их, если будем выбирать наименьший из двух ведущих элементов, помещать его в новое множество, если хотим, а затем удалять из соответствующего списка. · Поиск необходимой пары. Как мы можем проверить, существуют ли два целых числа x,y S таких ,что x+y=z для какого-то заданного z? Вместо того, чтобы перебирать все возможные пары, отсортируем числа в порядке возрастания. С ростом S[i], при увеличении I, его возможный партнер j, такой что S[j]=z-S[i], уменьшается. Таким образом, уменьшая j соответствующим образом при увеличении I, мы получаем изящное решение. · Эффективный поиск. Как мы можем эффективно проверить, принадлежит ли элемент s множеству S? Конечно, упорядочивание множества с целью применения эффективного бинарного поиска – это, наверное, наиболее стандартное приложение сортировки. Просто не забывайте остальные! Рассмотрим несколько достаточно поучительных алгоритмов сортировки Сортировка пузырьком Расположим массив сверху вниз, от нулевого элемента - к последнему. Идея метода: шаг сортировки состоит в проходе снизу вверх по массиву. По пути просматриваются пары соседних элементов. Если элементы некоторой пары находятся в неправильном порядке, то меняем их местами. После нулевого прохода по массиву "вверху" оказывается самый "легкий" элемент - отсюда аналогия с пузырьком. Следующий проход делается до второго сверху элемента, таким образом второй по величине элемент поднимается на правильную позицию... Делаем проходы по все уменьшающейся нижней части массива до тех пор, пока в ней не останется только один элемент. На этом сортировка заканчивается, так как последовательность упорядочена по возрастанию. Type arrType = Array[1 .. n] Of Integer; Procedure Bubble(Var ar: arrType; n: integer); Var i, j, T: Integer; Begin For i := 1 To n Do For j := n DownTo i+1 Do If ar[Pred(j)] > ar[j] Then Begin { < } T := ar[Pred(j)]; ar[Pred(j)] := ar[j]; ar[j] := T End End; Сложность этого метода сортировки составляет О(n^2) Пузырьковая сортировка с просеиванием Аналогичен методу пузырьковой сортировки, но после перестановки пары соседних элементов выполняется просеивание: наименьший левый элемент продвигается к началу массива насколько это возможно, пока не выполняется условие упорядоченности. Преимущество: простой метод пузырька работает крайне медленно, когда мин/макс (в зависимости от направления сортировки) элемент массива стоит в конце, этот алгоритм - намного быстрее. const n = 10; var x: array[1 .. n] of integer; i, j, t: integer; flagsort: boolean; procedure bubble_P; begin repeat flagsort:=true; for i:=1 to n-1 do if not(x[i]<=x[i+1]) then begin t:=x[i]; x[i]:=x[i+1]; x[i+1]:=t; j:=i; while (j>1)and not(x[j-1]<=x[j]) do begin Тестировалось на массиве целых чисел (25000 элементов). Прирост скорости относительно простой пузырьковой сортировки - около 75%...
Популярное: Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1046)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |