Мегаобучалка Главная | О нас | Обратная связь


Операции над множествами



2019-07-03 424 Обсуждений (0)
Операции над множествами 0.00 из 5.00 0 оценок




С помощью нескольких множеств можно строить новые множества или, как говорят, производить операции над множествами. Мы рассмотрим следующие операции над множествами: объединение, пересечение, разность множеств, дополнение множества. Все рассматриваемые операции над множествами мы будем иллюстрировать на диаграммах Эйлера-Венна.

Объединение множеств

Объединением А В множеств А и В называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из множеств А или В.

Символическая запись этого определения: А В={х | х А или х В}.

Здесь союз «или» понимается в смысле «неразделительного или», т.е. не исключается, что х может принадлежать и А и В. Отметим, что в таком случае элемент х, входящий в оба множества А и В, входит в их объединение только один раз (поскольку для множества не имеет смысла говорить о том, что элемент входит в него несколько раз).

Поясним определение объединения множеств с помощью диаграммы Эйлера-Венна:

На диаграмме объединение множеств А и В выделено штриховкой.

Если множество А определяется характеристическим свойством Р (х), а множество В - характеристическим свойством Q(х), то А  В состоит из всех элементов, обладающих, по крайней мере, одним из этих свойств.

Примеры объединений двух множеств:

1) Пусть А={2; 5; 7}, В={3; 5; 6}. Тогда А  В ={2; 3; 5; 6; 7}.

2) Пусть А=[-1/4; 2], В=[ -2/3; 7/4]. Тогда А В=[-2/3; 2] .

3) Пусть А= {х | х=8k, k  Z}, B={x | x=8n-4, n  Z}. Тогда A B ={x | 4m, m Z}.

Операция объединения множеств может проводиться не только над двумя множествами. Определение объединения множеств можно распространить на случай любого количества множеств и даже – на систему множеств. Система множеств определяется так: если каждому элементу α множества М отвечает множество Аα, то совокупность всех таких множеств мы будем называть системой множеств.

Объединением системы множеств {Аα} называется множество , состоящее из всех элементов, принадлежащих хотя бы одному из множеств Аα. При этом общие элементы нескольких множеств не различаются.

Таким образом, элемент х тогда и только тогда, когда найдется такой индекс α 0 М, что х A α0 .

В случае, когда М конечно и состоит из чисел 1, 2, … , n, применяется запись  Если M=N, то имеем объединение последовательности множеств .

Рассмотрим ещё один пример: пусть М=(1; 2) и для каждого α є М определим множество Аα =[0;α]; тогда = [0;2).

Из определения операции объединения непосредственно следует, что она коммутативна, т.е. А1  A2 = A2 А1, и ассоциативна, т.е. (А1  A2)  А3 = А1  (A2  А3).

Пересечение множеств

Пересечением А ∩ В множеств А и В называется множество, состоящее из всех элементов, принадлежащих одновременно каждому из множеств А и В.

Символическая запись этого определения: А ∩ В={х | х А и х В}.

Поясним определение пересечения множеств с помощью диаграммы Эйлера-Венна:

А ∩ В

На диаграмме пересечение множеств А и В выделено штриховкой.

Если множество А задается характеристическим свойством Р(х), a множество В-свойством Q(х), то в А ∩ В входят элементы, одновременно обладающие и свойством Р(х), и свойством Q(х).

Примеры пересечений двух множеств:

1)Пусть А={2; 5; 7; 8}, В={3; 5; 6; 7} .Тогда А ∩ В={5; 7}.

2)Пусть А=[-1/4; 7/4], В=[-2/3; 3/2]. Тогда А ∩ В= [-1/4; 3/2].

3)Пусть А= {х | х=2k, k є Z}, B={x | x=3n, n є Z}. Тогда А ∩ В ={x | x=6m, m  Z}.

4)Пусть А- множество всех прямоугольников, В-множество всех ромбов. Тогда А ∩ В -множество фигур, одновременно являющихся и прямоугольниками, и ромбами, т.е. множество всех квадратов.

Операцию пересечения можно определить и для произвольной системы множеств {Аα}, где α  М. Пересечением системы множеств {Аα}, называется множество , состоящее из всех элементов, принадлежащих одновременно каждому из множеств Аα, α М, т.е. = {x | x Аα для каждого α  М}.

В случае, когда М конечно и состоит из чисел 1, 2, … , n, применяется запись . Если M=N, то имеем пересечение последовательности множеств .

В рассмотренном выше примере системы множеств Аα =[0; α], α М =(1; 2) получим: =[0;1].

Операция пересечения множеств, как и операция объединения, очевидно, коммутативна и ассоциативна, т.е. А1∩A2 = A2 ∩А1 и (А1∩A2)∩ А3= А1∩(A2 ∩ А3).

Разность множеств

Разностью А\В множеств А и В называется множество, состоящее из всех элементов множества А, которые не принадлежат множеству В, т.е.

А\В={х | х А и х В},

что можно пояснить на диаграмме Эйлера-Венна следующим образом:

 

 

На диаграмме разность А\В выделена штриховкой.

Примеры разностей множеств:

1. Пусть А={1; 2; 5; 7}, В={1; 3; 5; 6}. Тогда А\В ={2;7}, а В\А={3; 6}.

2. Пусть А=[-1/4;2], В=[-2/3; 7/4]. Тогда А\В=(7/4;2], а В\А=[-2/3; -1/4).

3. Пусть А - множество всех четных целых чисел, В - множество всех целых чисел, делящихся на 3. тогда А\В - множество всех четных целых чисел, которые не делятся на 3, а В\А –множество всех нечетных целых чисел, кратных трем.

Дополнение множества

Пусть множество А и В таковы, что А В. Тогда дополнением множества А до множества В называется разность В\А. В этом случае применяется обозначение СBА=В\А. Если в качестве множества В берётся универсальное множество U, то применяется обозначение СА=СUА=U\А и такое множество просто называют дополнением множества А. Таким образом, символическая запись определения дополнения множества будет следующей:  СА={x | x A}.

На диаграммах Эйлера-Венна можно так пояснить определения СВА и СА:

 

 

2. Свойства операций над множествами.

Свойства операций над множествами:

П р и м е р ы. 

1. Множество детей является подмножеством всего населения.

2. Пересечением множества целых чисел с множеством положительных чисел является множество натуральных чисел.

3. Объединением множества рациональных чисел с множеством иррациональных чисел является множество действительных чисел.

4. Нуль является дополнением множества натуральных чисел относительно множества неотрицательных целых чисел.

Задача №1

 В олимпиаде по математике для абитуриентов приняло участие 40 учащихся, им было предложено решить одну задачу по алгебре, одну по геометрии и одну по тригонометрии. По алгебре решили задачу 20 человек, по геометрии – 18 человек, по тригонометрии – 18 человек.

 По алгебре и геометрии решили 7 человек, по алгебре и тригонометрии – 9 человек. Ни одной задачи не решили 3 человека.

 Сколько учащихся решили все задачи?

 Сколько учащихся решили только две задачи?

 Сколько учащихся решили только одну задачу?

 

Задача № 2

 

 Первую или вторую контрольные работы по математике успешно написали 33 студента, первую или третью – 31 студент, вторую или третью – 32 студента. Не менее двух контрольных работ выполнили 20 студентов.

 

 Сколько студентов успешно решили только одну контрольную работу?

 

Задача № 3

 

 В классе 35 учеников. Каждый из них пользуется хотя бы одним из видов городского транспорта: метро, автобусом и троллейбусом. Всеми тремя видами транспорта пользуются 6 учеников, метро и автобусом – 15 учеников, метро и троллейбусом – 13 учеников, троллейбусом и автобусом – 9 учеников.

 

 Сколько учеников пользуются только одним видом транспорта?

 

Решение задачи № 1

 

 Запишем коротко условие и покажем решение:

 m (Е) = 40

 m (А) = 20

 m (В) = 18

 m (С) = 18

 m (А∩В) = 7

 m (А∩С) = 8

 m (В∩С) = 9

 m (А В С) = 3 => m (А В С) = 40 – 3 = 37 (между буквами знак объединения)

 Обозначим разбиение универсального множества Е множествами А, В, С (рис.5).

(рис.5)

 К1 – множество учеников, решивших только одну задачу по алгебре;

 К2 – множество учеников, решивших только две задачи по алгебре и геометрии;

 К3 – множество учеников, решивших только задачу по геометрии;

 К4 – множество учеников, решивших только две задачи по алгебре и тригонометрии;

 К5 – множество всех учеников, решивших все три задачи;

 К6 – множество всех учеников, решивших только две задачи, по геометрии и тригонометрии;

 К7 – множество всех учеников, решивших только задачу по тригонометрии;

 К8 – множество всех учеников, не решивших ни одной задачи.

 Используя свойство мощности множеств и рисунок можно выполнить вычисления:

 m (К5) = m (А∩В∩С)= m (А В С) - m (А) - m (В) - m (С) + m (А∩В) + m (А∩С) + m (В∩С)

 m (К5) = 37-20-18-18+7+8+9=5

 m (К2) = m (А∩В) - m (К5) = 7-5=2

 m (К4) = m (А∩С) - m (К5) = 8-5=3

 m (К6) = m (В∩С) - m (К5) = 9-5=4

 m (К1) = m (А) - m (К2) - m (К4) - m (К5) = 20-2-3-5=10

 m (К3) = m (В) - m (К2) - m (К6) - m (К5) = 18-2-4-5=7

 m (К7) = m (С) - m (К4) - m (К6) - m (К5) = 18-3-4-5 =6

 m (К2) + m (К4) + m (К6) = 2+3+4=9 – число учеников решивших только две задачи;

 m (К1) + m (К3) + m (К7) = 10+7+6=23 – число учеников решивших только одну задачу.

Ответ:

5 учеников решили три задачи;

 9 учеников решили только по две задачи;

 23 ученика решили только по одной задаче.

 С помощью этого метода можно записать решения второй и третьей задачи так:

Решение задачи № 2

 m (А В) = 33

 m (А С) = 31

 m (В С) = 32

 m (К2) + m (К4) + m (К6) + m (К5) = 20

 Найти m (К1) + m (К3) + m (К7)

 m (АUВ) = m (К1) + m (К2) + m (К3) + m (К4) + m (К5) + m (К6) = m (К1) + m (К3) + 20 = 33 =>

 m (К1) + m (К3) = 33 – 20 = 13

 m (АUС) = m (К1) + m (К4) + m (К2) + m (К5) + m (К6) + m (К7) = m (К1) + m (К7) + 20 = 31 =>

 m (К1) + m (К7) = 31 – 20 = 11

 m (ВUС) = m (К3) + m (К2) + m (К5) + m (К6) + m (К7) + m (К4) = m (К3) + m (К7) + 20 = 32 =>

 m (К3) + m (К7) = 32 – 20 = 12

 2m (К1) + m (К3) + m (К7) = 13+11=24

 2m (К1) + 12 = 24

 m (К3)= 13-6=7

 m (К7)=12-7=5

 m (К1) + m (К3) + m (К7) = 6+7+5=18

Ответ:

 Только одну контрольную работу решили 18 учеников.

Решение задачи № 3

 m (Е) = 35

 m (А∩В∩С)= m (К5) = 6

 m (А∩В)= 15

 m (А∩С)= 13

 m (В∩С)= 9

 Найти m (К1) + m (К3) + m (К7)

 m (К2) = m (А∩В) - m (К5) = 15-6=9

 m (К4) = m (А∩С) - m (К5) = 13-6=7

 m (К6) = m (В∩С) - m (К5) = 9-6=3

 m (К1) + m (К3) + m (К7) = m (Е) - m (К4) - m (К2) - m (К6) - m (К5) = 35-7-9-3-6=10

Ответ:

Только одним видом транспорта пользуется 10 учеников.

Лекция № 4.

Математические и информационные модели в науке как средство работы с информацией. Функция как математическая и информационная модели.

Компьютерное моделирование как новый метод научных исследований основывается на:

1. построении математических моделей для описания изучаемых процессов;

2. использовании новейших вычислительных машин, обладающих высоким быстродействием (миллионы операций в секунду) и способных вести диалог с человеком.

Суть компьютерного моделирования состоит в следующем: на основе математической модели с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, уточняется модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно изменяя его коэффициенты, начальные и граничные условия, исследовать, как при этом будет вести себя объект. Имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями, имитирующими поведение реальных объектов, процессов или систем.

Реальные процессы и системы можно исследовать с помощью двух типов математических моделей: аналитических и имитационных.

В аналитических моделях поведение реальных процессов и систем (РПС) задается в виде явных функциональных зависимостей (уравнений линейных или нелинейных, дифференциальных или интегральных, систем этих уравнений). Однако получить эти зависимости удается только для сравнительно простых РПС. Когда явления сложны и многообразны исследователю приходится идти на упрощенные представления сложных РПС. В результате аналитическая модель становится слишком грубым приближением к действительности. Если все же для сложных РПС удается получить аналитические модели, то зачастую они превращаются в трудно разрешимую проблему. Поэтому исследователь вынужден часто использовать имитационное моделирование.

Имитационное моделирование представляет собой численный метод проведения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими поведение реальных объектов, процессов и систем во времени в течении заданного периода. При этом функционирование РПС разбивается на элементарные явления, подсистемы и модули. Функционирование этих элементарных явлений, подсистем и модулей описывается набором алгоритмов, которые имитируют элементарные явления с сохранением их логической структуры и последовательности протекания во времени.

Имитационное моделирование - это совокупность методов алгоритмизации функционирования объектов исследований, программной реализации алгоритмических описаний, организации, планирования и выполнения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими функционирование РПС в течении заданного периода.

Под алгоритмизацией функционирования РПС понимается пооперационное описание работы всех ее функциональных подсистем отдельных модулей с уровнем детализации, соответствующем комплексу требований к модели.

"Имитационное моделирование" (ИМ)- это двойной термин. "Имитация" и "моделирование" - это синонимы. Фактически все области науки и техники являются моделями реальных процессов. Чтобы отличить математические модели друг от друга, исследователи стали давать им дополнительные названия. Термин "имитационное моделирование" означает, что мы имеем дело с такими математическими моделями, с помощью которых нельзя заранее вычислить или предсказать поведение системы, а для предсказания поведения системы необходим вычислительный эксперимент (имитация) на математической модели при заданных исходных данных.

Основное достоинство ИМ:

1. возможность описания поведения компонент (элементов) процессов или систем на высоком уровне детализации;

2. отсутствие ограничений между параметрами ИМ и состоянием внешней среды РПС;

3. возможность исследования динамики взаимодействия компонент во времени и пространстве параметров системы;

Эти достоинства обеспечивают имитационному методу широкое распространение.

Рекомендуется использовать имитационное моделирование в следующих случаях:

1. Если не существует законченной постановки задачи исследования и идет процесс познания объекта моделирования. Имитационная модель служит средством изучения явления.

2. Если аналитические методы имеются, но математические процессы сложны и трудоемки, и имитационное моделирование дает более простой способ решения задачи.

3. Когда кроме оценки влияния параметров (переменных) процесса или системы желательно осуществить наблюдение за поведением компонент (элементов) процесса или системы (ПС) в течение определенного периода.

4. Когда имитационное моделирование оказывается единственным способом исследования сложной системы из-за невозможности наблюдения явлений в реальных условиях (реакции термоядерного синтеза, исследования космического пространства).

5. Когда необходимо контролировать протекание процессов или поведение систем путем замедления или ускорения явлений в ходе имитации.

6. При подготовке специалистов новой техники, когда на имитационных моделях обеспечивается возможность приобретения навыков в эксплуатации новой техники.

7. Когда изучаются новые ситуации в РПС. В этом случае имитация служит для проверки новых стратегий и правил проведения натурных экспериментов.

8. Когда особое значение имеет последовательность событий в проектируемых ПС и модель используется для предсказания узких мест в функционировании РПС.

Однако ИМ наряду с достоинствами имеет и недостатки:

1. Разработка хорошей ИМ часто обходится дороже создания аналитической модели и требует больших временных затрат.

2. Может оказаться, что ИМ неточна (что бывает часто), и мы не в состоянии измерить степень этой неточности.

3. Зачастую исследователи обращаются к ИМ, не представляя тех трудностей , с которыми они встретятся и совершают при этом ряд ошибок методологического характера.

И тем не менее ИМ является одним из наиболее широко используемых методов при решении задач синтеза и анализа сложных процессов и систем.

Одним из видов имитационного моделирования является статистическое имитационное моделирование, позволяющее воспроизводить на ЭВМ функционирование сложных случайных процессов.

При исследовании сложных систем, подверженных случайным возмущениям используются вероятностные аналитические модели и вероятностные имитационные модели.

В вероятностных аналитических моделях влияние случайных факторов учитывается с помощью задания вероятностных характеристик случайных процессов (законы распределения вероятностей, спектральные плотности или корреляционные функции). При этом построение вероятностных аналитических моделей представляет собой сложную вычислительную задачу. Поэтому вероятностное аналитическое моделирование используют для изучения сравнительно простых систем.

Подмечено, что введение случайных возмущений в имитационные модели не вносит принципиальных усложнений, поэтому исследование сложных случайных процессов проводится в настоящее время, как правило, на имитационных моделях.

В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров ПС. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.

Статистическая модель случайного процесса - это алгоритм, с помощью которого имитируют работу сложной системы, подверженной случайным возмущениям; имитируют взаимодействие элементов системы, носящих вероятностный характер.

При реализации на ЭВМ статистического имитационного моделирования возникает задача получения на ЭВМ случайных числовых последовательностей с заданными вероятностными характеристиками. Численный метод решающий задачу генерирования последовательности случайных чисел с заданными законами распределения получил название "метод статистических испытаний" или "метод Монте-Карло".

Так как метод Монте-Карло кроме статистического моделирования имеет приложение к ряду численных методов (взятие интегралов, решение уравнений), то целесообразно иметь различные термины.

Итак, статистическое моделирование - это способ изучения сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационных моделей.

Метод Монте-Карло - это численный метод, моделирующий на ЭВМ псевдослучайные числовые последовательности с заданными вероятностными характеристиками.

Методика статистического моделирования состоит из следующих этапов:

1. Моделирование на ЭВМ псевдослучайных последовательностей с заданной корреляцией и законом распределения вероятностей (метод Монте-Карло), имитирующих на ЭВМ случайные значения параметров при каждом испытании;

2. Преобразование полученных числовых последовательностей на имитационных математических моделях.

  1. Статистическая обработка результатов моделирования.

Обобщенный алгоритм метода статистических испытаний представлен на рис. 5.1.


Рис. 5.1. Обобщенный алгоритм метода статистических испытаний

Лекция № 5

Логические операции. Связь между логическими операциями и операциями с множествами.

  Математическая логика тесно связана с логикой и обязана ей своим возникновением. Основы логики, науки о законах и формах человеческого мышления (отсюда одно из ее названий - формальная логика), были заложены величайшим древнегреческим философом Аристотелем (384—322 гг. до н. э.), который в своих трактатах обстоятельно исследовал терминологию логики, подробно разобрал теорию умозаключений и доказательств, описал ряд логических операций, сформулировал основные законы мышления, в том числе законы противоречия и исключения третьего. Вклад Аристотеля в логику весьма велик, недаром другое ее название - аристотелева логика. Еще сам Аристотель заметил, что между созданной им наукой и математикой (тогда она именовалась арифметикой) много общего. Он пытался соединить две эти науки, а именно свести размышление, или, вернее, умозаключение, к вычислению на основании исходных положений. В одном из своих трактатов Аристотель вплотную приблизился к одному из разделов математической логики - теории доказательств.

  В дальнейшем многие философы и математики развивали отдельные положения логики и иногда даже намечали контуры современного исчисления высказываний, но ближе всех к созданию математической логики подошел уже во второй половине XVII века выдающийся немецкий ученый Готфрид Вильгельм Лейбниц (1646 - 1716), указавший пути для перевода логики «из словесного царства, полного неопределенностей, в царство математики, где отношения между объектами или высказываниями определяются совершенно точно» . Лейбниц надеялся даже, что в будущем философы, вместо того чтобы бесплодно спорить, станут брать бумагу и вычислять, кто из них прав . При этом в своих работах Лейбниц затрагивал и двоичную систему счисления.

  Следует отметить, что идея использования двух символов для кодирования информации очень стара. Австралийские аборигены считали двойками, некоторые племена охотников-сборщиков Новой Гвинеи и Южной Америки тоже пользовались двоичной системой счета. В некоторых африканских племенах передают сообщения с помощью барабанов в виде комбинаций звонких и глухих ударов. Знакомый всем пример двухсимвольного кодирования - азбука Морзе, где буквы алфавита представлены определенными сочетаниями точек и тире.

  После Лейбница исследования в этой области вели многие выдающиеся ученые, однако настоящий успех пришел здесь к английскому математику-самоучке Джорджу Булю (1815—1864), целеустремленность которого не знала границ. Материальное положение родителей Джорджа (отец которого был сапожным мастером) позволило ему окончить лишь начальную школу для бедняков. Спустя какое-то время Буль, сменив несколько профессий, открыл маленькую школу, где сам преподавал. Он много времени уделял самообразованию и вскоре увлекся идеями символической логики. В 1847 году Буль опубликовал статью «Математический анализ логики, или Опыт исчисления дедуктивных умозаключений», а в 1854 году появился главный его труд «Исследование законов мышления, на которых основаны математические теории логики и вероятностей».

    Буль изобрел своеобразную алгебру - систему обозначений и правил, применимую ко всевозможным объектам, от чисел и букв до предложений. Пользуясь этой системой, он мог закодировать высказывания (утверждения, истинность или ложность которых требовалось доказать) с помощью символов своего языка, а затем манипулировать ими, подобно тому, как в математике манипулируют числами. Основными операциями булевой алгебры являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ).

  Через некоторое время стало понятно, что система Буля хорошо подходит для описания электрических переключательных схем. Ток в цепи может либо протекать, либо отсутствовать, подобно тому, как утверждение может быть либо истинным, либо ложным. А еще несколько десятилетий спустя, уже в XX столетии, ученые объединили созданный Джорджем Булем математический аппарат с двоичной системой счисления, заложив тем самым основы для разработки цифрового электронного компьютера.

Отдельные положения работ Буля в той или иной мере затрагивались и до, и после него другими математиками и логиками. Однако сегодня в данной области именно труды Джорджа Буля причисляются к математической классике, а сам он по праву считается основателем математической логики и тем более важнейших ее разделов - алгебры логики (булевой алгебры) и алгебры высказываний.

  Большой вклад в развитие логики внесли и русские ученые П.С. Порецкий (1846-1907), И.И. Жегалкин (1869-1947).

  В XX веке огромную роль в развитии математической логики сыграл Д. Гильберт (1862-1943), предложивший программу формализации математики, связанную с разработкой оснований самой математики. Наконец, в последние десятилетия XX века бурное развитие математической логики было обусловлено развитием теории алгоритмов и алгоритмических языков, теории автоматов, теории графов (С.К. Клини, А. Черч, А.А Марков, П.С. Новиков и многие другие). 



2019-07-03 424 Обсуждений (0)
Операции над множествами 0.00 из 5.00 0 оценок









Обсуждение в статье: Операции над множествами

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (424)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.013 сек.)