Мегаобучалка Главная | О нас | Обратная связь


Линейное дифференциальное уравнение первого порядка .



2019-07-04 176 Обсуждений (0)
Линейное дифференциальное уравнение первого порядка . 0.00 из 5.00 0 оценок




Определение. Линейным дифференциальным уравнением первого порядка называется уравнение вида y/+g(x)y=h(x).

Такое название ему дано в связи с тем, что относительно переменных y и y/ его можно рассматривать как линейное.

Если , то уравнение принимает простой вид y/=h(x), и сводится к нахождению неопределенного интеграла . Его общее решение тогда имеет вид .

Если , то уравнение называется однородным линейным. Оно приобретает вид , и, как нетрудно видеть, сводится к решению уравнения с разделяющимися переменными  и далее .

Его общее решение имеет вид , где  - некоторая первообразная для функции g(x).

Предположим теперь, что , функции g(x) и h(x) являются непрерывными. Пусть y=f(x,c) – искомое общее решение линейного дифференциального уравнения.

Представим исходное уравнение в виде

,

и подставим в выражение, стоящее в квадратных скобках, , т.е. как бы полагая в общем решении . Тогда вышеприведенное уравнение примет вид

,

являясь линейным однородным дифференциальным уравнением (в нем вместо y взята для удобства переменная z, чтобы не возникло путаницы решений этого уравнения с исходным).

Общее решение этого уравнения, как уже отмечалось ранее, может быть представлено в виде

,

где A – произвольная постоянная. Очевидно,  является его частным решением, и, следовательно, может быть получено при некотором значении , т.е.

.

Если теперь освободиться от условия фиксирования постоянной , то получаем, что общее решение исходного уравнения имеет вид

.

В нем второй множитель функция  является, как нетрудно видеть, частным решением при c=1 однородного линейного уравнения . Первый множитель функция  представляет общее решение дифференциального уравнения u/v(x)=h(x).

Действительно, подставляя в это уравнение u/x(x,c), получаем тождество

.

Таким образом, показано, что общее решение линейного дифференциального уравнения

Представляется в виде y=u(x,c)v(x), где v(x) – частное решение однородного уравнения , решаемое при c=1, u(x,c) – общее решение уравнения u/v(x)=h(x).

Нетрудно видеть, что в обоих случаях приходится решать уравнение с разделяющимися переменными.

Заметим, что хотя при решении однородного уравнения  бралось частное решение V(x) однородного уравнения v/+g(x)v=0,

Являющегося уравнением с разделяющимися переменными.

На втором этапе определяется решение u(x,c) дифференциального уравнения u/v(x)=h(x),

Также являющегося уравнением с разделяющимися переменными. После их решений общее решение исходного линейного уравнения представляется в виде

Y=u(x,c)v(x).

Пример 1. Решить уравнение

Y/+2y=sinx.

Сначала решаем однородное уравнение v/+2v=0.

Из него получаем

 или .

Интегрируя его левую и правую части, получаем его общий интеграл (решение) вида

.

Полагая в нем c=0 и потенциируя его, получаем следующее его нетривиальное частное решение .

Далее решаем уравнение вида

 или .

Разнося переменные в разные части уравнения и интегрируя их, получаем общее решение этого уравнения

.

Вычислим интеграл:

.

Рассматривая данное уравнение, как уравнение относительно интеграла, находим его вид

.

Следовательно, .

Тогда общее решение исходного уравнения будет

.

Предположим теперь, что требуется выделить частное решение, проходящее через точку M(0,0), т.е. решение, удовлетворяющее начальному условию y(0)=0. Для этого подставим значения x=0, y=0 в общее решение и найдем соответствующее значение постоянной c:

, отсюда .

Искомым частным решением является

.

Пример 2. Решить уравнение

,

являющееся линейным дифференциальным уравнением.

На первом этапе найдем решение соответствующего линейного однородного уравнения

, или .

Разделяя переменные по разные стороны уравнения, имеем

.

Интегрируя обе части данного уравнения, получаем следующее его частное решение

.

На втором этапе решаем уравнение вида

.

Делая замену , сокращая обе части уравнения на  и разделяя переменные, имеем du=x2dx.

Интегрируя правую и левую части уравнения, получаем его общее решение

.

Общее решение исходного дифференциального уравнения имеет вид

.



2019-07-04 176 Обсуждений (0)
Линейное дифференциальное уравнение первого порядка . 0.00 из 5.00 0 оценок









Обсуждение в статье: Линейное дифференциальное уравнение первого порядка .

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (176)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)