Жиры и растительные масла
ЖИРЫ, в-ва животного (см. Жиры животные), растительного (см. Растительные масла) и микробного происхождения, состоящие в осн. (до 98%) из триглицеридов (ацилглицеринов) полных эфиров глицерина и жирных к-т. Содержат также ди- и моноглицериды (1-3%), фосфолипиды, гликолипиды и диольные липиды (0,5-3%), своб. жирные к-ты, стерины и их эфиры (0,05 1,7%), красящие в-ва (каротин, ксантофилл), витамины A, D, Е и К, полифенолы и их эфиры. Хим., физ. и биол. св-ва жиров определяются входящими в его состав триглицеридами и, в первую очередь, длиной цепи, степенью ненасыщенности жирных к-т и их расположением в триглицериде. В состав жиров входят в осн. неразветвленные жирные к-ты, содержащие четное число атомов С (от 4 до 26) как насыщенные, так моно- и полиненасыщенные; в осн. это миристиновая, пальмитиновая, стеариновая, 9-гексадеценовая, олеиновая, линолевая и линоленовая к-ты. Почти все ненасыщ. к-ты растит. жиров и большинства животных жиров являются цис-изомерами. Жиры жвачных животных содержат транс-изомеры. Триглицериды, содержащие остатки разл. к-т, существуют в виде неск. изомеров положения, а также в виде разл. стереоизомеров, напр.:
Триглицериды прир. жиров содержат по крайней мере две разл. жирные к-ты. Различают Триглицериды, содержащие три насыщ. к-ты (S3), две насыщ. и одну ненасыщ. (соотв. SSU и SUS), одну насыщ. и две ненасыщ. (соотв. SUU и USU) и три ненасыщ. к-ты (U3) (см. табл.).
Химические свойства. Гидролиз жиров, конечные продукты к-рого глицерин и жирные к-ты, осуществляют в пром-сти нагреванием их с водой до 200-225 °С при 2-2,5.106 Па (безреактивный способ) или нагреванием при нормальном давлении в присут. сульфокислот (катализатор Твитчела и контакт Петрова). Щелочной катализ применяют в процессах мыловарения (см. Мыла) и при наличии в жирнокислотных цепях гидроксильных групп. Скорости ферментативного гидролиза a- и b-сложноэфирных групп ферментом панкреатич. липазой различны, что используют для установления строения триглицеридов жиров. Алкоголиз жиров, в частности метанолиз, используется как первая ступень непрерывного метода мыловарения. Глицеролиз действием глицерина применяют для получения моно-и диглицеридов, используемых в качестве эмульгаторов. Ацидолиз, напр., ацетолиз кокосового жира с послед. этерификацией избытка уксусной к-ты глицерином, приводит к смеси, состоящей из лауроилдиацетина, миристоилдиацетина и др. смешанных триглицеридов, применяемой в качестве мягчителей нитроцеллюлозы. Большое практич. значение имеет р-ция двойного обмена ацильными радикалами в триглицеридах (переэтерификация), протекающая как внутри-, так и межмолекулярно и приводящая к перераспределению остатков жирных к-т. При проведении этой р-ции в однофазной жидкой системе (ненаправленная переэтерификация) происходит статистич. перераспределение кислотных остатков в образующейся смеси триглицеридов. Направленная (многофазная) переэтерификация осуществляется при такой т-ре, при к-рой высокоплавкие триглицериды находятся в твердом, а низкоплавкие - в жидком состоянии. При направленной переэтерификации жиры обогащаются наиб. высокоплавкими (S3) и наиб. низкоплавкими (U3) триглицеридами. Ненаправленная и особенно направленная переэтерификация натуральных жиров используется для изменения их физ. св-в - т-ры плавления, пластичности, вязкости. Ацидолиз и алкоголиз жиров проводят преим. в присут. кислотных катализаторов, переэтерификацию - в присут. основных. Большое значение имеют восстановление (см. Гидрогенизация жиров) и цис-, транс-изомеризация непредельных ацильных остатков триглицеридов. Изомеризацию цис-изомеров ненасыщ. к-т в транс-изомеры (э л а и д и р о в а н и е) проводят при 100-200 °С в присут. кат. - Ni, Se, оксидов N, S. При изомеризации полиненасыщ. к-т (рыбий жир) образуются к-ты с сопряженными двойными связями, обладающие высокой способностью к высыханию. Прогоркание жиров, проявляющееся в появлении специфич. запаха и неприятного вкуса, вызвано образованием низкомол. карбонильных соед. и обусловлено рядом хим. процессов. Различают два вида прогоркания - биохим. и химическое. Биохим. прогоркание характерно для жиров, содержащих значительное кол-во воды и примеси белков и углеводов (напр., для коровьего масла). Под воздействием содержащихся в белках ферментов (липаз) происходит гидролиз жиров и образование своб. жирных к-т. Увеличение кислотности может не сопровождаться появлением прогорклости. Микроорганизмы, развивающиеся в жирах, выделяют др. ферменты - липооксидазы, под действием к-рых жирные к-ты окисляются до b-кетокислот. Метилалкилкетоны, образующиеся при распаде последних, являются причиной изменения вкуса и запаха жиров. Во избежание этого производится тщательная очистка жиров от примесей белковых в-в, хранение в условиях, исключающих попадание микроорганизмов, и при низкой т-ре, а также добавка консервантов (NaCl, бензойная к-та). Хим. прогоркание - результат окисления жиров под действием О2 воздуха (автоокисление). Первая стадия - образование пероксильных радикалов при атаке молекулярным О2 углеводородных остатков как насыщ., так и ненасыщ. жирных к-т. Р-ция промотирустся светом, теплом и соед., образующими своб. радикалы (пероксиды, переходные металлы). Пероксильные радикалы инициируют неразветвленные и разветвленные цепные р-ции, а также распадаются с образованием ряда вторичных продуктов - гидроксикислот, эпоксидов, кетонов и альдегидов. Последние и вызывают изменение вкуса и запаха жиров. Для жиров, в к-рых преобладают насыщ. жирные к-ты, характерно образование кетонов (кетонное прогоркание), для жиров с высоким содержанием ненасыщ. к-т - альдегидное прогоркание. Для замедления и предотвращения хим. прогоркания используют ингибиторы радикальных р-ций: смесь 2- и 3-трет-бутил-4-гидроксианизола (БОА), 3,5-ди-трет-бутил-4-гидрокситолуол (БОТ), эфиры галловой к-ты, а также соед., образующие комплексы с тяжелыми металлами (напр., лимонная, аскорбиновая к-ты). РАСТИТЕЛЬНЫЕ МАСЛА жирные (жиры растительные), продукты, извлекаемые из растит. сырья и состоящие в осн. из триглицеридов высших жирных к-т. Осн. источники растительных масел - масличные растения (масличные культуры). Растительные масла содержатся также в косточках нек-рых плодовых деревьев (абрикос, персик, вишня, черешня, миндаль), семенах винограда, арбуза, томатов, табака, чая, а также в разл. маслосодсржащих отходах пищ. произ-в, перерабатывающих с.-х. сырье. К последним относят гл. обр. отруби и зародыши семян зерновых культур. В оболочке зерна пшеницы и ржи содержится 5-6% масла, в зародыше-11-13 и 10-17% соотв.; в зародыше кукурузы 30-48% масла, проса-ок. 27%, риса-24-25%. Содержание масла в растениях и его качество зависят от сорта растения, условий произрастания (удобрения, обработка почвы), степени зрелости плодов и семян. Свойства. Растительные масла на 94-96% состоят из смесей триглицеридов высших жирных кислот (табл. 1). Оставшуюся часть составляют в-ва, близкие к жирам (напр., фосфо-липиды, стерины, витамины), своб. жирные к-ты и др. компоненты. Плотность растительных масел 0,87-0,98 г/см3 (табл. 2); большинство из них раств. в бензине, бензоле, дихлорэтане, сероуглероде, ацетоне, диэтиловом эфире, ССl4; ограниченно раств. в этаноле и метаноле, не раств. в воде. Св-ва растительных масел определяются гл. обр. составом и содержанием жирных к-т, образующих триглицериды (см. Жиры). Обычно это насыщ. и ненасыщ. одноосновные жирные к-ты с неразветвленной углеродной цепью и четным числом атомов углерода (преим. С16 и С18). В подавляющем большинстве растительные масла содержат смеси глицеридов разл. к-т, в нек-рых присутствуют и глицериды одной к-ты. Кроме того, в растительных маслах обнаружены в небольших кол-вах глицериды жирных к-т с нечетным числом атомов углерода. В зависимости от состава триглицеридов растительные масла могут быть жидкими (подсолнечное, хлопковое, соевое, рапсовое, кукурузное, льняное и др.) и твердыми (кокосовое, пальмовое, пальмоядровое и др.). У жидких масел, содержащих гл. обр. непредельные к-ты, т-ра застывания ниже 0°С, у твердых - достигает 40 °С. При контакте с О2 воздуха или при нагр. до 250-300°С многие растительные масла подвергаются окислит. полимеризации ("высыхают"), образуя пленки. По способности к высыханию растительные масла условно подразделяют на высыхающие, полувысыхающие и невысыхающие. Первые, напр. льняное масло, конопляное и тунговое масла, содержат гл. обр. триглицериды к-т с двумя или тремя двойными связями (линолевой, линоленовой, элеостеариновой); вторые, напр. подсолнечное масло, соевое и маковое масла,-триглицериды к-т с одной или двумя двойными связями (олеиновой, линолевой); третьи, напр. кокосовое и пальмовое масла,-преим. триглицериды насыщ. к-т (лауриновой, пальмитиновой, стеариновой) и небольшое кол-во монрненасыщ. олеиновой. Невысыхающее касторовое масло содержит тригли-церид рицинолевой к-ты. При анализе состава растительных масел кол-во высших жирных к-т, образующихся при омылении, характеризуют числом омыления, степень ненасыщенности - йодным и родановым числами. Компоненты растительных масел, отличные от триглицеридов, подразделяют на омыляемые и неомыляемые. К первым относят своб. жирные к-ты (содержание 1-2%), фосфолипиды (0,5-4%), стерины (0,3-1,3%), воски и воскообразные в-ва (0,002-0,4%), пигменты (не более 0,16%), ко вторым-белки (0,1-1,5%), витамины (до 0,5%), углеводороды и др. Свободные жирные к-ты могут содержаться в растит. сырье (семена недозревших растений или семена, самосозревающие при хранении во влажном состоянии) или образовываться в процессе выделения масла в результате частичного гидролиза триглицеридов (высшие жирные к-ты) и их окисления под действием света и при длит. хранении (низкомол. жирные к-ты - масляная, каприновая, капроновая, каприло-вая, ацетоуксусная, уксусная). Суммарное содержание своб. к-т в % по массе в растительных маслах определяет их кислотность и характеризуется кислотным числом. Наличие своб. низкомол. жирных к-т, р-римых в воде и испаряющихся при нагр., характеризуется числом Рейхарта-Мейсля; наличие к-т, не растворяющихся в воде, но способных испаряться при нагр.,-числом Поленске. Оба этих числа определяются кол-вом мл 0,1 н. р-ра КОН, расходуемого на нейтрализацию 5 г растительного масла в определенных условиях. Содержание нерастворимых к-т и неомыляемых компонентов характеризуется числом Генера (содержание их в % в 100 г растительного масла).
Фосфолипиды в растительных маслах представлены гл. обр. глицеро-фосфатидами (лецитины), в меньшем кол-ве -инозитфосфа-тидами и сфингомиелинами. Фосфолипиды растительных масел участвуют в биол. окислении масел в организме и сами по себе представляют большую ценность (см. Фосфолипиды). Однако в растительных маслах они образуют коллоидные р-ры, из к-рых при поглощении воды коагулируют с образованием осадков, наз. фузами. В таких осадках могут происходить гидроли-тич. процессы, приводящие к потере масел и затруднениям при переработке. Под действием О2 воздуха фосфолипиды легко окисляются с образованием темноокрашенных соед., ухудшающих качество масел. Поэтому растительные масла, не идущие непосредственно в пищу или подвергающиеся дальнейшей переработке (напр., рафинированию), очищают-вт фосфоли-пидов, подвергая масло гидратации, или связывая с помощью разл. хим. агентов, напр. диметилдиаллиламмоний-хлорида. Выделенные фосфолипиды, учитывая их биол. и пищ. ценность, используют для произ-ва фосфолипидных концентратов, к-рые добавляют во мн. пищ. продукты (напр., маргарин) и корма для животных.
Из стеринов растит. происхождения (фитостеринов) в растительных маслах наиб. часто содержатся ситостерин и стигмастерин, являющиеся предшественниками витамина D (см. Стерины). Холестерин в растительных маслах практически не содержится. Наиб. кол-во стеринов содержится в кукурузном масле-0,42-1,38%, в подсолнечном их 0,25-0,53%, в хлопковом 0,26-0,57%, в соевом 0,35-0,40%. При переработке и очистке растительных масел потери стеринов стараются свести к минимуму. При необходимости стерины из растительных масел могут быть извлечены с помощью алкалоида дигитонина, с к-рым они дают нерастворимые в этаноле соединения. Воски и воскообразные вещества в растительных маслах образуют эмульсии и вызывают помутнение масла. Для их удаления масло обычно охлаждают до 8-12°С и осадок отфильтровывают (способ "вымораживания"). Пигменты, содержащиеся в семенах и плодах масличных растений, придают растительным маслам разл. окраску. Красные и желтые оттенки в цвете растительных масел определяются присутствием в них каротиноидов (красный оттенок-каротин, желтый-ксантофилл), наиб. их кол-во содержится в кукурузном масле (0,058-0,15%). Зеленый оттенок, характерный для соевого, кукурузного, рапсового, горчичного и др. масел, определяется присутствием в них смеси хлорофиллов А и В. В хлопковом масле содержится токсичный пигмент госсипол (0,14-2,5% по массе), наиб. содержание к-рого отмечается в масле, подученном из низкосортных и незрелых хлопковых семян. При переработке масла госсипол дает разл. темно-окрашенные продукты. Удаляют госсипол из масла с помощью антраниловой к-ты, с к-рой он образует нерастворимое соединение. При очистке растительных масел с помощью адсорбентов происходит удаление пигментов и осветление масла. Осн. массу белковых веществ, переходящих в растительные масла из семян, составляют альбумины и глобулины. Поскольку наличие белков ухудшает товарный вид масел и увеличивает его потери при очистке и хранении, белковые примеси (вместе с фосфолипидами) удаляют при гидратации масла, а также под действием щелочей или минер. к-т. Углеводы, моно-, ди- и олигосахариды, декстрины, крахмал, клетчатка и гемицеллюлоза, содержащиеся в растительных маслах в кол-ве 0,02-0,5%, образуют стабильные эмульсии, способствуют потемнению масла при термич. обработке, придают маслам неприятный вкус и запах. Часть неомыляемых в-в, входящих в растительные масла, составляют витамины Е, A, D и К. Витамин Е содержится в растительных маслах в виде a-, b-, g-, и d-токоферолов. Кол-во D-a-токоферола в подсолнечном масле составляет ок. 0,05%. Высоким содержанием токоферолов характеризуются также масла пшеничных отрубей (100-400 мг в 100 г масла), соевое (74-160 мг в 100 г масла) и кукурузное (87-200 мг) масла; до 100 мг токоферолов в 100 г подсолнечного, хлопкового, рапсового и нек-рых др. маслах, до 60 мг-в арахисовом, до 30 мг-в оливковом и кокосовом. Витамин А встречается в растительных маслах в виде провитаминов; содержится преим. в облепиховом, абрикосовом, персиковом и др. маслах. Витамин D содержится гл. обр. в соевом и кунжутном маслах, витамин К (К1, К2, К3)-в конопляном, подсолнечном, льняном и сурепном маслах. В растительных маслах присутствуют также незначит. кол-ва насыщ. и не-насыщ. углеводородов с разветвленной цепью. В частности, в состав подсолнечного, хлопкового и соевого масел входит сквален (0,008-0,012%). Углеводороды, совместно с белками, в значит. степени определяют вкус и запах масла. В результате длит. хранения на свету, при повыш. т-ре или под действием микроорганизмов растительные масла портятся-прогоркают. Неприятный запах и вкус растительным маслам сообщают продукты окисления жирных к-т (альдегиды, кетоны, гидроксикисло-ты), низкомол. жирные к-ты и их глицериды, продукты распада каротиноидов, стеринов, витаминов, фосфолипи-дов. Иногда в растительных маслах могут находиться пестициды, используемые в с. х-ве. Их обычно удаляют из масла вместе с одорирующими в-вами в процессе перегонки с паром при 200-250 °С в вакууме. Воски. Спермацет
ВОСКИ, исторически сложившееся название разных по составу и происхождению продуктов, преим. природных, к-рые по св-вам близки пчелиному воску. Природные воски Представляют собой пластичные легко размягчающиеся при нагр. продукты, большинство из к-рых плавится в интервале 40-90°С (см. табл.). Нек-рые воски, напр. пчелиный и буроугольный, являются гетерогенными системами, в к-рых дисперсная кристаллич. фаза распределена в аморфной дисперсионной среде. Воски не смачиваются водой, водонепроницаемы, обладают низкой электрич. проводимостью, горючи. Они не раств. в холодном этаноле, хорошо раств. в бензине, хлороформе, бензоле и диэтиловом эфире. Большинство прир. восков содержит сложные эфиры одноосновных насыщенных карбоновых к-т нормального строения и спиртов с 12-46 атомами С в молекуле. Такие воски по хим. св-вам близки к жирам (триглицеридам), но омыляются только в щелочной среде. Иногда прир. продукты, не содержащие сложные эфиры, напр. парафин, петролатум, церезин, наз. аналогами восков или воскоподобными материалами. воск-смесь сложных эфиров (72%), насыщенных неразветвленных углеводородов С21—С35 (12-15%) и карбоновых к-т С16—С36 (15%), относит. кол-ва к-рых зависят от условий питания пчел и др. факторов. Получают переработкой сот, обрезков вощины и восковых наростов в ульях. Шерстяной (шерстный) воск выделяется кожными железами овец в волосяную луковицу и обильно покрывает шерсть (в кол-ве 5-16% по массе). В его состав входят: сложные эфиры жирных к-т и высших спиртов, в т. ч. ланолинового С11Н21СН2ОН; жирные к-ты (12-40%); спирты (44-45%); углеводороды (14-18%); стерины (холестерин, изохолестерин, эргостерин) в своб. виде и в виде сложных эфиров (10%). Получают из промывных вод шерстомоек или экстрагированием шерсти орг. р-рителями. После обработки щелочами, отбелки окислителями и адсорбентами получают очищенный шерстяной воск-ланолин. Последний в отличие от др. восков образует устойчивые эмульсии с водой, взятой в кол-ве, превышающем массу воска в 1,8-2 раза. цет содержится вместе со спермацетовым маслом в костных черепных углублениях нек-рых видов китов, особенно кашалотов. Состоит на 98% из цетина С15Н31СООС16Н33. Спермацет отделяют от масла вымораживанием. Гидрируя спермацетовое масло, получают воск, близкий по св-вам спермацету. Китайский воск вырабатывается червецом Coccus ceriferus, к-рый обитает гл. обр. на китайском ясене и образует на нем восковой покров. Содержит сложный эфир гексакозановой к-ты СН3(СН2)24СООН и гексадеканового спирта СН3(СН2)15ОН (95-97%), смолу (до 1%), углеводороды (до 1%) и спирты (до 1%). Шеллачный воск содержится в прир. смоле - шеллаке (ок. 5%). В него входят 60-62% сложных эфиров, 33-35% спиртов, 2-6% углеводородов. Выделяют при охлаждении спиртового р-ра шеллака. Воск бактерий покрывает пов-сть кислотоупорных бактерий, напр. туберкулезных и лепры, обеспечивая их устойчивость к внеш. воздействиям. Содержит сложные эфиры миколевой к-ты С88Н172О4 иэйкозанола СН3(СН2)17СНОНСН3, а также октадеканола СН3(СН2)15СНОНСН3. Воск сахарного тростника покрывает тонкой пленкой стебли растений. В него входят сложные эфиры (78-82%), насыщенные С14—С34 и ненасыщенные С15—С37 углеводороды (3-5%), насыщенные жирные к-ты С12—С36 (14%) и спирты С24—С34 (6-7%). При отжиме тростника ок. 60% воска переходит в сок. При очистке последнего воск выпадает в осадок, из к-рого его извлекают экстракцией орг. р-рителями.
СВОЙСТВА ВОСКОВ
Карнаубский воск покрывает листья пальмы Copernicia cerifera. Состоит на 80% из сложных эфиров триаконтанола CH3(CH2)29OH и тетракозановой СН3(СН2)22СООН и гексакозановой к-т. Содержит также 10% спиртов - октакозанола СН3(СН2)27ОН, гептакозанола СН3(СН2)26ОН, не встречающегося в остальных восках, и др., а также 1-1,5% углеводородов, 0,5% фитостерина. Для получения воска листья пальмы высушивают, из них выколачивают порошок, к-рый вываривают в воде и выливают в формы. 2000 листьев дают ок. 16 кг воска. Пальмовый воск находится в углублениях кольчатого ствола восковой пальмы Ceroxilon ondlicoka, откуда его соскабливают. Состоит преим. из сложных эфиров гексакоза-новой к-ты с гексакозанолом СН3(СН2)25ОН и триаконта-нолом СН3(СН2)29ОН. Одно дерево дает ок. 12кг воска. Канделильский воск извлекают из травы канделилы Pedilanthus Pavonis Boas, растущей в Мексике. С 1 га получают от 2 до 8 т воска, к-рый содержит до 40% углеводородов. Японский воск добывают из лакового дерева Rhus vernicifera, произрастающего в Японии и Китае. Содержит глицериды гексадекановой, октадекановой, эйкозановой СН3(СН2)18СООН и нек-рых дикарбоновых к-т, а также карбоновые к-ты и спирты. Получают вывариванием в воде мучнистой массы, образующейся при измельчении косточек плодов. Торфяной воск получают экстракцией бензином при 80 °С верхового битуминозного торфа со степенью разложения не менее 30%, влажностью не более 50% и зольностью не более 8% с послед. отдувкой р-рителя. Полученный продукт содержит 60-75% воска и 25-40% смол; состоит из сложных эфиров (50-52%), карбоновых к-т (35-40%), углеводородов (5-7%) и спиртов (2-3%). Смолы из воска экстрагируют бензином, охлажденным до 0-5 °С. Нерастворимую часть промывают р-рителем, продувают острым паром и получают обессмоленный воск. Различными методами очистки обессмоленного воскв получают рафинированный воск. Такой воск имеет кислотное число 160 и состоит на 97,5% из к-т С8—С30. Этерификацией его спиртами получают разл. виды этерифицированных восков. Буроугольный воск (монтан-воск) экстрагируют бензолом или бензином из бурого битуминозного угля. Удалением смолы путем ее экстракции р-рителем получают обессмоленный воск, окислением последнего - рафинированный, этерификацией рафинированного воска одно-, двух-и многоатомными спиртами-этерифицированный воск. По составу буроугольный воск близок торфяному и отличается от него меньшим содержанием низкомол. кислородсодержащих соединений. Озокерит (горный, или минеральный, воск)-минерал из группы нефтяных битумов; генетически связан с месторождениями парафинистой нефти. По хим. составу - смесь твердых (49,5%) и жидких (45%) насыщенных углеводородов и смол (5,5%). Экстрагируют из руды тяжелым бензином (т. кип. 100-200°С); оставшийся после отгонки р-рителя продукт фильтруют и отгоняют от него при 300°С легкие фракции. Обработкой озокерита 95-98%-ной H2SO4 при 200°С под давлением с послед. нейтрализацией известью и очисткой отбеливающей глиной получают церезин. Пром-сть СССР выпускает церезины марок 80, 75, 69 и 57 (цифры указывают т-ру каплепадения), к-рые представляют собой смесь насыщенных углеводородов С37Н76-С53Н108 гл. обр. изостроения. Синтетические воски. В зависимости от типа исходного сырья делят на частично и полностью синтетические. Воски частично синтетические получают окислением сырого монтан-воска смесью хромовой и серной к-т с послед. этерификацией продуктов окисления (восковых к-т) разл. гликолями. В эту группу также входят абрильские воски (смесь производных жирных к-т и алифатич. или ароматич. аминов) и воски на основе нефтяных и смоляных парафинов и их производных. Воски полностью синтетические получают по р-ции Фишера-Тропша действием Н2 на СО. Образующиеся продукты состоят гл. обр. из высших алканов. Широкое применение находят также воски, состоящие из смеси полиолефинов (алкатены, виннотены, луполены) с мол. м. 2000-10000, степенью кристалличности 10-85%, плотн. 0,9-0,94 г/см3, вязкостью расплава при 140°С 0,085-1 кПа*с. В зависимости от мол. массы и кристалличности эти воски м. б. жидкими или твердыми. Воски применяют более чем в 200 отраслях народного хозяйства. Они входят в состав политур, защитных композиций для металлов, тканей, бумаги, кож, дерева; применяются в литейной пром-сти как компоненты составов для изготовления форм при литье по выплавляемым моделям, смазок форм при получении изделий из пенополиуретанов, как изолирующий материал, компоненты мазей в косметике и медицине и др.
Популярное: Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (385)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |