Мегаобучалка Главная | О нас | Обратная связь


ОТКРЫТЫЕ СЕТИ С МНОГОРЕЖИМНЫМИ СТРАТЕГИЯМИ ОБСЛУЖИВАНИЯ И ИНФОРМАЦИОННЫМИ СИГНАЛАМИ ДВУХ ТИПОВ



2019-07-03 167 Обсуждений (0)
ОТКРЫТЫЕ СЕТИ С МНОГОРЕЖИМНЫМИ СТРАТЕГИЯМИ ОБСЛУЖИВАНИЯ И ИНФОРМАЦИОННЫМИ СИГНАЛАМИ ДВУХ ТИПОВ 0.00 из 5.00 0 оценок




 

В 1 исследовалось стационарное распределение марковского процесса, описывающего открытую сеть с многорежимными стратегиями обслуживания и отрицательными заявками. Здесь мы рассмотрим открытую сеть массового обслуживания, в которую наряду с отрицательными заявками, называемыми в дальнейшем отрицательными сигналами, поступает еще один вид информационных сигналов, изменяющих режим функционирования обслуживающих устройств в узлах.

На фазовом пространстве  задан многомерный марковский процесс , где , своими инфинитезимальными интенсивностями перехода: для  

 

 

для всех других состояний  предполагается, что . Интенсивность выхода получается сложением этих интенсивностей:

 

 

Этот процесс описывает сеть, состоящую из  однолинейных узлов, в которую поступают четыре независимых стационарных пуассоновских потока: положительных заявок с параметром , отрицательных сигналов с параметром , сигналов уменьшения режима с параметром , сигналов увеличения режима с параметром . Поступление отрицательного сигнала в узел уменьшает число заявок в нем на единицу, если число заявок в узле больше нуля, и не производит никаких изменений, если в узле нет заявок. Сигнал уменьшения режима при поступлении в -й узел с режимом  переводит его в режим работы , не изменяя числа заявок в узле, и не производит никаких изменений, если узел находится в режиме работы 0; сигнал увеличения режима при поступлении в -й узел с режимом  переводит его в режим работы , не изменяя числа заявок в узле, и не производит никаких изменений, если узел находится в режиме работы . После этих операций информационные сигналы пропадают, не оказывая более влияния на сеть. Поступающие положительная заявка, отрицательный сигнал, сигнал уменьшения и сигнал увеличения режима направляются в -й узел соответственно с вероятностями . Положительная заявка, обслуженная в -м узле, мгновенно направляется в -й узел, с вероятностью  оставаясь положительной, с вероятностью  превращаясь в отрицательный сигнал, с вероятностью  - в сигнал понижения режима, с вероятностью  - в сигнал повышения режима, или с вероятностью  покидает сеть . Длительность обслуживания прибором -го узла положительных заявок имеет показательное распределение с параметром . Режимы работы и интенсивности перехода с режима на режим определяются как в предыдущем разделе. Состояние сети в момент времени  описывается так же, только теперь  - число положительных заявок в -м узле в момент .

Предположим, что все величины  положительны. Пусть  - средние интенсивности поступления в -й узел положительных заявок, отрицательных сигналов, сигналов понижения и повышения режимов соответственно, удовлетворяющие системе нелинейных уравнений трафика:

 

 

Уравнения (4.2.3) имеют решение. Действительно, первые два уравнения в (4.2.3) совпадают с уравнениями трафика (4.1.1),(1.1.2), которые имеют решение . Очевидно, по найденным  из третьего и четвертого уравнений (4.2.3) однозначно определятся .

Рассмотрим изолированный -й узел в фиктивной окружающей среде, считая, что в него поступают четыре независимых пуассоновских потока: положительных заявок с параметром , отрицательных сигналов с параметром , сигналов уменьшения режима с параметром  и сигналов увеличения режима с параметром . Необходимым и достаточным условием обратимости, а, значит, и квазиобратимости изолированного узла является условие

 

 

что проверяется с помощью простой модификации доказательства леммы 2.2. Заметим, что это условие заведомо выполняется, когда интенсивности переходов с режима на режим  не зависят от состояния узла. Уравнения обратимости для изолированного узла имеют вид:

 

 

Из уравнений (4.2.5) находим

 

 

Полагая в (4.2.6)  и заменяя  на , получим:

 

 

откуда


 

Подставляя это в (4.2.7), имеем:

 

 

Из условия нормировки находим, что

 

 

В силу теоремы Фостера [82] для эргодичности изолированного узла достаточно выполнения неравенств

 

 

Доказательство дословно повторяет то, которое использовалось при доказательстве аналогичного утверждения в 4.1.2, с заменой оценки для  следующей оценкой:

 

 

Отметим то обстоятельство, что вторая часть (4.2.10) заведомо имеет место, когда интенсивности переходов с режима на режим не зависят от состояния узла. Заметим также, что второе неравенство в (4.2.10) гарантирует регулярность марковского процесса, описывающего изолированный узел в фиктивной окружающей среде. Это означает, что за конечное время процесс не может сделать бесконечное число переходов из одного состояния в другое (моменты скачков процесса не могут иметь конечной предельной точки).

Теорема 2.2. [45, C.186]  Если для всех  выполняются условия (4.2.4) и (4.2.10), то марковский процесс  эргодичен, а его стационарное распределение имеет форму произведения (4.1.15), где  определяются с помощью соотношений (4.2.8),(4.2.9).

Доказательство. Для доказательства того, что , определенные в (4.1.15),(4.2.5),(4.2.6), образуют стационарное распределение марковского процесса , достаточно [94,97,103] подобрать функцию  которая удовлетворяла бы соотношениям

 

 

Если такие  удастся найти (см. [94,97,103]), то окажется, что  будут являться инфинитезимальными интенсивностями перехода для обращенной во времени цепи Маркова , а  - стационарными вероятностями для  и . Положим

 

 

для всех остальных состояний  положим . Для функции  (4.2.11) действительно выполняется, что легко проверяется подстановкой в него равенств (4.2.1),(4.2.13) и использования (4.2.8),(4.2.9). Остается доказать (4.2.12). Складывая (4.2.13), получим, что

 

 

Используя (4.2.3), имеем

 


Применяя снова (4.2.3), свойства индикаторов и тот факт, что , получим

 

 

Сравнивая полученный результат с (4.2.2), делаем вывод, что  для любого состояния .

Докажем, что при выполнении условий (4.2.10) марковский процесс  эргодичен. Согласно эргодической теореме Фостера [82], для этого достаточно доказать, что существует нетривиальное неотрицательное решение уравнений глобального равновесия

 

 

такое, что ряд  сходится. Складывая (4.2.11) по всем , убеждаемся, что  является решением (4.2.14). Из (4.2.2) следует, что

 


 

Поскольку ряд

 

 

распадается в произведение  рядов, каждый из которых сходится в силу условия (4.2.10) как сумма бесконечной геометрической прогрессии со знаменателем, меньшим единицы, то и сам он сходится. В силу (4.2.15) будет сходиться ряд

 

 

По эргодической теореме Фостера это означает, что марковский процесс  эргодичен. Таким образом, теорема доказана полностью.

 Замечание 4.2. Если условия (4.2.4) и (4.2.10) выполнены во всех узлах, то получается следующий алгоритм для нахождения стационарных вероятностей:

1. Проверяется выполнение условий (4.2.4).

2. Решается система нелинейных уравнений (4.2.3).

3. Проверяется выполнение (4.2.10).

4. Определяются  с помощью соотношений (4.2.8), (4.2.9).

5. Находится стационарное распределение состояний сети  с помощью формулы (4.1.15).

Этот алгоритм также может быть дополнен алгоритмом расчета совместного стационарного распределения чисел заявок в узлах и совместного стационарного распределения номеров режимов работы узлов, а также расчета моментов этих распределений.

Если  - состояние сети, где , то через  обозначим вектор, характеризующий числа положитнльных заявок в узлах, а через  - вектор, характеризующий режимы работы в узлах. Стационарные распределения этих двух векторов обозначим соответственно  и .

Нетрудно убедиться, складывая (4.1.15) по всем возможным значениям , что совместное стационарное распределение чисел положительных заявок в узлах имеет следующую форму:

 

 

где каждый множитель имеет геометрическое распределение

 

 

Производящая функция стационарного распределения числа заявок в -м узле имеет вид

 

 

а -й факториальный момент есть

 

 

Как и следовало ожидать, в стационарном режиме среднее число положительных заявок и дисперсия числа положительных заявок в каждом узле,

 

 

стремятся к нулю, когда загрузка этого узла

 

 

Точно так же, складывая (4.1.15) по всем возможным значениям , определим совместное стационарное распределение режимов в узлах сети:

 

 

где

Средний номер режима работы -го узла в стационарной сети находится как

 

 

Анализ выходящих из сети потоков положительных заявок не проводился, поскольку, как и в предыдущем подразделе, такие потоки носят сложный характер из-за нелинейности уравнений трафика.

 


ЗАКЛЮЧЕНИЕ

 

В работе рассмотрена открытая сеть массового обслуживания с многорежимными стратегиями обслуживания, в которую наряду с обычными, положительными заявками поступают пуассоновские потоки информационных сигналов, оказывающих разовое воздействие на соответствующий узел сети. Интенсивность обслуживания прибором узла зависит от номера узла, но не зависит от его состояния. Предполагалось, что при помещении изолированного узла в фиктивную окружающую среду, характеризующуюся поступлением в него пуассоновских независимых потоков положительных заявок и информационных сигналов каждого типа, узел описывается обратимым марковским процессом с непрерывным временем и счетным пространством состояний. Положительная заявка после обслуживания в некотором узле может остаться положительной, а может превратиться в информационный сигнал любого из рассматриваемых типов. Рассмотрены два случая: а)кроме положительных заявок в сеть могут поступать отрицательные заявки; б)кроме положительных заявок в сеть могут поступать отрицательные сигналы, сигналы умньшения и сигналы увеличения номера режима на единицу.

Для обоих случаев составлены нелинейные уравнения трафика и доказано существование их решения, установлены достаточные условия эргодичности марковского процесса, характеризующего состояния рассматриваемых открытых сетей, и в аналитической форме найдено финальное стационарное распределение состояний этого процесса. Построен алгоритм для расчета стационарных вероятностей состояний сети.

 


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

 

1. Анисимов B.B., Лебедев Е.А. Стохастические сети обслуживания. Марковские модели. - Киев: Лыбидь, 1992. - 205 с.

2. Башарин Г.П., Бочаров П.П., Коган Я.А. Анализ очередей в вычислительных сетях. - М.: Наука. - 1989. - 336с.

3. Башарин Г.П., Толмачев А.Л. Некоторые результаты теории сетей массового обслуживания // Методы развития теории телетрафика. - М. - 1970. - С.52-65.

4. Башарин Г.П., Толмачев А.Л. Теория сетей массового обслуживания и ее приложения к анализу информационно-вычислительных систем // Итоги науки и техники. - М., 1983. - Т.21. - С.3-119. - (Сер. Теория вероятностей. Матем. статистика. Теор. кибернетика / ВИНИТИ).

5. Бочаров П.П., Печинкин А.В. Теория массового обслуживания: Учебник. - М.: РУДН, 1995. - 529с.

6. Гихман И.И., Скороход А.В. Введение в теорию случайных процессов. - М.: Наука, 1977. - 568с.

7. Горцев А.М., Назаров А.А., Терпугов А.Ф. Управление и адаптация в системах массового обслуживания. - Томск: ТГУ, 1978. - 208с.

8. Добрушин Р.Л., Кельберт М.Я., Рыбко А.Н., Сухов Ю.М. Качественные методы теории сетей с очередями // Препринт. -М., 1986. - 50с. - (ИППИ АН СССР).

9. Евдокимович В.Е., Малинковский Ю.В. Сети массового обслуживания с динамической маршрутизацией и динамическими вероятностными обходами узлов заявками // Проблемы передачи информации. - 2001. - Том 37, вып.3. - С.55-66.

10. Жожикашвили В.А., Вишневский В.М. Сети массового обслуживания. Теория и применение к сетям ЭВМ. - М.: Радио и связь. - 1988. - 192с.

11. Ивницкий В.А. Сети массового обслуживания и их применение в ЭВМ // Зарубежная радиоэлектроника. - 1977. - №7. - С.33-70.

12. Ивницкий В.А. Об условии независимости стационарных вероятностей состояний разомкнутой сети однолинейных систем с потерями от вида распределений длительностей обслуживания // Известия АН СССР. Техническая кибернетика. - 1981. - №4. - С.136-140.

13. Ивницкий В.А. Об условии инвариантности стационарных вероятностей для сетей массового обслуживания // Теория вероятностей и ее применения. - 1982. - Т. 27, № 1. - С.188-192.

14. Ивницкий В.А. Об инвариантности стационарных вероятностей состояний для замкнутых сетей однолинейных СМО // ДАН УССР. А. - 1989. - №7. - С.8-11.

15. Ивницкий В.А. Об условии инвариантности стационарных вероятностей состояний для сетей однолинейных СМО // Теория вероятностей и ее применения. - 1989. - Т. 34, № 3. - С.576-580.

16. Ивницкий В.А. Об инвариантности стационарных вероятностей состояний для сетей многолинейных систем массового обслуживания с абсолютным приоритетом поступающего требования и дообслуживанием // Исследование систем и сетей массового обслуживания: Тез. докл. 12-й Бел. зимней школы-семинара по ТМО, Гродно, янв.-февр. 1996 г. / Бел. гос. унив. - Минск, 1996. - С.36-37.

17. Кельберт М.Я., Сухов Ю.М. Математические вопросы теории сетей с очередями // Итоги науки и техники. - М., 1988. - Т.26. - С.3-96. - (Сер. Теория вероятностей. Матем. статистика. Теор. кибернетика / ВИНИТИ).

18. Кениг Д., Рыков В.В., Шмидт Ф. Стационарные системы массового обслуживания с зависимостями // Итоги науки и техники. - М., 1981. - Т.18. - С.95-186. - (Сер. Теория вероятностей. Матем. статистика. Теор. кибернетика / ВИНИТИ).

19. Клейнрок Л. Коммуникационные сети. - М.: Наука, 1970. - 255с.

20. Клейнрок Л. Вычислительные системы с очередями. - М.: Мир, 1979. - 600с.

21. Климов Г.П. Стохастические системы обслуживания. - М.: Наука, 1966. - 243с.

22. Ковалев Е.А. Сети с ненадежными каналами и резервом//Математические методы исследования сетей связи и сетей ЭВМ. Тезисы докладов VI Белорусской школы-семинара по ТМО. - Минск,1990. - С.70-71.



2019-07-03 167 Обсуждений (0)
ОТКРЫТЫЕ СЕТИ С МНОГОРЕЖИМНЫМИ СТРАТЕГИЯМИ ОБСЛУЖИВАНИЯ И ИНФОРМАЦИОННЫМИ СИГНАЛАМИ ДВУХ ТИПОВ 0.00 из 5.00 0 оценок









Обсуждение в статье: ОТКРЫТЫЕ СЕТИ С МНОГОРЕЖИМНЫМИ СТРАТЕГИЯМИ ОБСЛУЖИВАНИЯ И ИНФОРМАЦИОННЫМИ СИГНАЛАМИ ДВУХ ТИПОВ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (167)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.02 сек.)