Мегаобучалка Главная | О нас | Обратная связь


Математическая модель взаимодействия пузырьков



2019-08-14 157 Обсуждений (0)
Математическая модель взаимодействия пузырьков 0.00 из 5.00 0 оценок




 

В пятом приближении относительно  уравнения динамики двух газовых пузырьков в вязкой сжимаемой жидкости представляют собой систему, состоящую из четырех дифференциальных уравнений относительно радиусов пузырьков , координат их центров

;

;

;

;

Методика решения

 

Имея четыре уравнения второго порядка относительно радиуса и положения центра пузырьков. Вводим замену, чтобы избавится от второго порядка, и запишем уравнения 1 ого порядка:

Получаем систему 8-и уравнений 1-го порядка относительно радиуса, положения центра пузырьков, скорость изменения радиусов и положения центра пузырьков.

;

( )/ ;

/ ;

/ ;

/ ;

/ ;

/ ;

;

( )/ ;

( )/ ;

( )/ ;

/ ;

/ ;

( )/ ;

;

/ ;

0;

( )/ ;

( )/ ;

/ ;

( )/ ;

;

/ ;

0;

( )/ ;

( )/ ;

/ ;

( )/ ;

Отсюда получаем данные уравнения в следующем виде:

Решим уравнение методом последовательных приближений.

В нулевом приближении данные уравнения записываются относительно радиуса и положения центра пузырьков.

Подставляя выражения, находим уравнения нулевого приближения:

В первом приближении уравнения записываются относительно радиуса, положения центра пузырьков, скорость изменения радиусов и положения центра пузырьков. Полученное первое приближение добавляем к нулевому приближению. И так находим до пятого приближения.

Исходя из этого, можем записать следующую систему:

Полученные дифференциальные уравнения решаются методом Дортсмана–Принса восьмой степени точности. (Программа приведена ниже).

 

Исследование взаимодействия двух радиально пульсирующих пузырьков газа в жидкости

Для учета влияния вязкости и сжимаемости жидкости проводим следующую модификацию математической модели. (По аналогии с работой Дойникова[?]).

1. С учетом сжимаемости жидкости получим следующие уравнения:

;

;

 

Решение для нулевого приближения для одного пузырька

;

Вводим замены:

;   ;    ;;

=  = ;

- начальное давление газа в пузырьке;

; -давление газа в пузырьке.

А - константа Ван-дер-Ваальса;

- коэффициент поверхностного натяжения;

 - давление газа в пузырьке;

 - статическое давление в жидкости;

- Начальный радиус пузырька;

R - Радиус пузырька;

 - Центр пузырька;

u - Вектор скорости жидкости;

-давление в жидкости на большом удалении от пузырька, где

- амплитуда и частота колебаний давления. Рассматривается лишь один период колебаний ( ).

- Плотность жидкости;

- Скорость звука в жидкости;

- Кинематический коэффициент вязкости

 - расстояние между пузырьками.

 

;

;

Обозначим слагаемые и сомножители через: , , , , :

; ; ;

; ;

;

 ;

Добавляем второе уравнение: =0 =>

;

;

 

Добавляем уравнение второго пузырька

;

; ; ; =  = ;

 

;

;

; ; ;

; ;

;

;

Добавляем второе уравнение: =0 =>

;

;

 

Решение для первого приближения одного пузырька

 

;

;

;

;

( );

;

 



2019-08-14 157 Обсуждений (0)
Математическая модель взаимодействия пузырьков 0.00 из 5.00 0 оценок









Обсуждение в статье: Математическая модель взаимодействия пузырьков

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (157)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)