Мегаобучалка Главная | О нас | Обратная связь


КОСМИЧЕСКИЕ ТРОСОВЫЕ СИСТЕМЫ: ВЗГЛЯД ИНЖЕНЕРА И МЕХАНИКА



2019-08-14 399 Обсуждений (0)
КОСМИЧЕСКИЕ ТРОСОВЫЕ СИСТЕМЫ: ВЗГЛЯД ИНЖЕНЕРА И МЕХАНИКА 0.00 из 5.00 0 оценок




 Что могут тросовые системы в космосе?

Тросовые системы в перспективе могут овладеть чрезвычайно широ­ким набором "профессий" в космосе. Рассмотрим кратко схемы, обсуж­даемые в литературе.

Как известно, искусственная тяжесть желательна для длительной рабо­ты экипажей в космосе. Для ее создания можно составить орбитальную станцию из двух отсеков, соединить их тросом и привести во вращение вокруг центра масс. В таком режиме двигалась связка "Джемини-1 1" с ракетной ступенью "Аджена". Угловая скорость ее вращения была в 13,5 раза больше орбитальной. Рассматривались и более сложные конструкции, состоящие из большого числа отсеков, соединенных троса­ми в многоугольные конфигурации .

Если связка вращается вокруг центра масс синхронно с орбитальным движением, то при ее ориентации вдоль геоцентрического радиуса-вектора (т.е. вдоль местной вертикали) возникает режим гравитационной стабили­зации. В таком режиме двигалась связка "Джемини-12" с ракетной ступенью "Аджена". В этом движении искусственная тяжесть в от­секах складывается на 1/3 из приращения центробежных сил и на 2/3 из приращения гравитационных сил, что составляет в сумме ^g=(3*DR/R)g, где DR — вертикальное смещение относительно центра масс,R — геоцент­рический радиус орбиты центра масс. g — ускорение свободного падения на данной высоте. Искусственная тяжесть, составляющая даже малые доли g (микротяжесть ^g), позволяет улучшить условия жизни на орбите: изба­виться от плавающих предметов, облегчить обращение с водой и т.д. Условия микрогравитации благоприятны для перекачки жидкостей на орбите (например, топлива) из одного резервуара в другой. В условиях невесомости дозаправка топливом на орбите является сложной технологи­ческой проблемой, так как по мере опорожнения резервуара общая масса жидкости под действием поверхностного натяжения разбивается на мно­жество капель, собрать которые не так-то просто. В условиях микрогра­витации жидкость будет перетекать из одного резервуара в другой по прос­тому закону сообщающихся сосудов, который в равной степени справед­лив как для полной тяжести g, так и для микротяжести g. Представим, что в вертикальной конфигурации один из отсеков является резервуаром с топливом . Пристыковавшись к этому отсе­ку, межорбитальный буксир или орбитальный самолет сможет дозаправиться простейшим способом, открыв вентиль и использовав перетекание топлива из сосуда с большим уровнем в сосуд с меньшим уровнем. Минимальная длина троса, которая обеспечивает уровень микрогравитации, достаточный для преодоления поверхностного натяжения, составляет для разных видов топлива от 30м до 1,2 км . Трос может быть достаточно тонким: сечение менее 1 мм^2, погонная масса ~ 1 кг/км. Разне­сение отсека с топливом и жилого отсека станции на разные концы троса повышает также безопасность и работоспособность станции в аварийных ситуациях.

За пределы станции может быть вынесен не только резервуар с топли­вом. Вынос узла для пристыковки орбитального самолета позво­ляет существенно уменьшить толчок, который испытывает станция, и дос­тигнуть заметной экономии топлива .

Схема гравитационно стабилизированной связки находит и другие применения. В рассмотрен проект интерферометра, состоящего из двух приемных антенн, соединенных тросом длиной 5 км и расположенных вдоль геоцентрического радиуса-вектора. Большая база орбиталь­ного интерферометра и, следовательно, его большая разрешающая спо­собность позволяют проводить тонкие радиоисследования Солнца и планет, в частности на тех длинах волн, которые не пропускает земная ионосфера.

Существует проект пассивного спутника-радиоотражателя на геоста­ционарной орбите, который представляет собой цепочку большого числа металлических шариков, соединенных стерженьками с шарнирами и рас­положенных радиально, и может быть элементом разветвленной сис­темы радиосвязи. На низших формах колебаний такая цепочка шариков ведет себя, как гибкая нить.

Трос, расположенный вдоль местной вертикали, может служить основ­ным несущим элементом для различных вариантов солнечных космических элекстростанций. Конструкция такой электростанции состоит из большого числа коллекторов солнечной энергии, расположенных вдоль троса длиной 50 км. Коллекторы могут быть выполнены в форме пластин, цилиндров или шаров. Вырабатываемая солнечной электростанци­ей энергия будет передаваться на Землю с помощью СВЧ-антенны, располо­женной на конце троса, обращенном на Землю. Движение всей системы про­исходит в режиме гравитационной стабилизации .  

Обсуждаются способы полезного использования солнечного излучения в космосе с помощью пленочных отражателей. В предлагаемых кон­струкциях существенными элементами являются тросы-стропы, за счет которых осуществляется управление ориентацией и формой отражающей поверхности.

Значительный интерес представляют тросовые системы, взаимодейст­вующие с магнитным полем Земли. Если электропро­водящий и изолированный снаружи трос развернуть с орбитальной станции вдоль местной вертикали и с помощью бортовой энергоустановки пропус­тить по нему электрический ток то со стороны геомагнитного поля на трос будет действовать распределенная сила, уско­ряющая движение станции. Трос в этом случае будет действовать, как своего рода электромагнитный двигатель для станции. Ток, протекающий по тросу, должен замыкаться через ионосферную плазму; контакт с плазмой осуществляется специальными устройствами, через которые на одном конце троса электроны стекают в окружающую плазму, а на дру­гом конце собираются из плазмы.

Проводящий трос можно использовать не только как двигатель, но и как генератор электрической энергии. При движении троса, снабженного на концах устройствами контакта с плазмой, в магнитном поле в тросе будет индуцироваться электродвижущая сила. Если между тросом и одним из устройств контакта с плазмой поместить электрическую нагрузку, то на ней будет производиться полезная работа. Сила, действующая на трос со стороны магнитного поля, в этом случае будет тормозить движение стан­ции. По предварительным оценкам, коэффициент полез­ного действия такого электрогенератора очень высок- около 90%. За счет большой скорости движения троса э.д.с. индукции будет составлять на вы­соте 400 км около 2000 В/км. При длине троса 10—20 км разность потен­циалов между его концами составит 2—4 кВ, сила гока будет измеряться амперами, мощность генератора может достигнуть нескольких десятков киловатт. Уменьшение высоты орбиты в процессе генерации электроэнер­гии может компенсироваться тягой реактивных двигателей, что дает высо­коэффективный способ перевода химической энергии в электрическую.

Выгодной выглядит комбинация режимов тяги и генерации. При входе станции в тень Земли се солнечные батареи перестают вырабатывать энер­гию. В этот период движения электроэнергия на борту станции может вырабатываться тросовым генератором за счет уменьшения энергии орби­тального движения. При выходе на освещенную сторону Земли часть элект­роэнергии, вырабатываемой солнечными батареями, нужно будет использо­вать для работы троса как двигателя с целью восполнения энергии орбиталь­ного движения. Возможность запасения энергии в виде энергии орбиталь­ного движения и высвобождения ее с малыми потерями с помощью тросо­вого мотор-генератора представляется очень заманчивой. Если на станции для тех или иных целей необходима кратковременная генерация пиковой электрической мощности, тогда в течение многих витков трос работает как двигатель и станция набирает высоту, затем в нужный момент трос переключается на генерацию и за несколько витков переводит запасенную

энергию орбитального движения в электроэнергию за счет уменьшения выcoты полета станции.

Пропуская ток по тросу в фазе с изменением положения станции на орбите, можно изменять все элементы орбиты без затрат химического топ­лива что даёт новый и весьма экономный способ маневрирования на орби­те. Описанную электромагнитную тросовую систему можно исполь­зовать также для приема и генерации радиоволн и экспериментов с ионо­сферной плазмой.

Важным для практики применением тросов в космосе является ис­следование верхней атмосферы Земли. Атмосфера на высоте 100 км недос­тупна для непосредственного исследования ни с самолетов, ни для спутни­ков. Для полета самолетов эти слои слишком разрежены, а для спутни­ков — слишком плотны. Зондирующие ракеты могут находиться в этих слоях лишь незначительное время. Рассмотрим привязной спутник для негодования атмосферы. Трос длиной около 100 км соединяет спут­ник-зонд с орбитальным самолетом. Орбитальный самолет летит на высоте 200—250 км над поверхностью Земли и буксирует спутник-зонд на высоте 110—130 км. Такой полет может продолжаться довольно долго. Кроме измерения параметров атмосферы на этих высотах возможно также определение аэродинамических характеристик различных моделей, выпу­щенных со спушика-зонда. Это дает уникальную возможность экспери­ментального изучения входа в атмосферу перспективных моделей косми­ческих аппаратов. Поэтому эту систему называют также "высотной аэро­динамической трубой".

С низколетящего привязного спутника-зонда можно получать сним­ки Земной поверхности с заметно лучшим разрешением, чем с обыкновен­ного спутника. Причем можно делать стереоскопические снимки, когда одно изображение получается с зонда, а другое — с орбитального са­молета. Спутник-зонд является также средством для тонкого исследова­ния гравитационных и магнитных аномалий и определения коэффициентов при старших гармониках в разложении соответствующих потенциалов.

Для первых экспериментов с атмосферной и электромагнитной ТС на базе орбитального самолета предполагается использовать многослойные тросы толщиной 1—3 мм и погонной массой в пределах 1—10 кг/км.

Выгодным представляется использование тросов для различных транспортных операций в космосе. При традиционном способе межорбитальных перемещении рабочее тело, выброшенное из сопла реактивного двигателя, безвозвратно теряется. С помощью длинных тросов можно образовывать временные связки спутников и изменять их орбиты, передавая без потерь энергию и момент количества движения от одного спутника к другому, т.е. используя один из спутников в качестве реактивной массы. Как пока­зывают расчеты, при рациональной комбинации таких операций с включе­нием реактивного двигателя или электромагнитного тросового двигателя можно достигнуть существенной экономии топлива.

Рассмотрим схему запуска спутника с орбитального самолета с помощью троса. Трос осуществляет передачу спутнику части энергии и момента количества движения орбитального самолета. Это приводит к уве­личению апогея орбиты спутника и уменьшению перигея орбиты самолета, в частности орбитальный самолет может выйти на траекторию входа в ат­мосферу и возвращения на Землю. При отделении последнего топливного бака от орбитального самолета бак не просто сбрасывается, а спускается на длинном тросе, передавая часть своей энергии и момента количества движения орбитальному самолету и увеличивая тем самым апогей его орбиты. Потерявший скорость топлив­ный бак входит в атмосферу и сгорает. По проведенным оценкам, такая схема сброса бака позволит увеличить грузоподъемность орбиталь­ного самолета на 1 ,5 тонны без дополнительных затрат топлива.

Использование длинного троса позволяет осуществить торможение орбитального самолета без затрат топлива. Для этого с орбитального самолета на тросе в верхние слои атмосферы спускается баллон, который испытывает значительные аэродинамические сопротивление. Натяжение троса передает эту тормозящую силу орбитальному самолету. После достаточного для посадки снижения скорости баллон отцепляется и сгорает в атмосфере. При использовании крыла вместо баллона можно из­менять плоскость орбиты орбитального самолета, если крыло движется не в плоскости орбиты, а с боковым смещением, меняющимся в резонан­се с орбитальным движением. Эта операция образно сравнивается с хож­дением под парусом, только парус оказывается отнесенным от корабля на 100 км!

Интересный способ маневрирования на орбите возникает при периоди­ческом изменении длины троса в резонансе с орбитальным движением. Это приводит к вековой эволюции (правда, очень медленной) орбиты центра масс связки. Если учитывать сплюснутость Земли, то аналогичный эффект наблюдается и при изменении длины троса на удвоенной орбиталь­ной частоте.

"Космический эскалатор". Он сос­тоит из нескольких ступеней - радиальных связок. Запускаемый на высо­кую орбиту спутник подлетает к нижнему концу каждой связки и по тро­су перетягивается на ее верхний конец, затем перелетает к следующей связке и таким образом может быть доставлен, например, на геостационарную ор­биту. Постепенное снижение орбит связок, образующих ступени косми­ческого эскалатора, может компенсироваться путем использования тросов как электромагнитных двигателей, а также частично за счет встречного по­тока полезных грузов, возвращаемых с высоких орбит на Землю. По имею­щимся оценкам, космический эскалатор позволяет добиться заметной эко­номии топлива.

Более реальным, чем земной, представляется лунный "космический лифт". В своем движении вокруг Земли Луна остаётся все время повернутой к Земле одной и той же стороной. Это обстоятельство позво­ляет прикрепить, например, к обратной стороне Луны космическую стан­цию на тросе, вытянутом вдоль линии Земля - Луна. Эта систе­ма, по существу, представляет собой вариант радиальной связки. Её необычность состоит в том, что одним из тел, соединённых тросом, является естественное небесное тело. В отличие от зем­ного космического лифта трос для лунного лифта, изготовленный из современных высокопрочных материалов, может иметь весьма скромные характеристики (средняя погонная масса ~1 кг/км, сечение ~1 мм^2). Привязной спутник Луны может быть использован не только для обмена грузами с поверхностью Луны. Факт удержания космической станции за обратной стороной Луны вблизи коллинеарной точки либрации L2 систе­мы Земля — Луна имеет и самостоятельное значение. Как известно, дви­жение свободного космического аппарата вблизи точки L2 неустойчиво. Вопросам активной стабилизации движения космического аппарата в окре­стности точки L2 посвящено большое количество работ. В то же время спутник, привязанный тросом, в окрестности точки L2 не требует никакого управления: его стабилизация имеет пассивный ха­рактер.

Подъем грузов с поверхности Луны может осуществляться не только с помощью стационарно закрепленной тросовой системы. Подъём грузов с помощью вращающейся связки двух спутников. Вращательное и орбитальное движения связки подобраны так, чтобы в пе­риселении один из спутников подходил к поверхности Луны с нулевой относительной скоростью и захватывал груз. В апоселении груз отцепля­ется и выводится на окололунную орбиту. Трос в этой связке должен иметь длину несколько сотен километров.

Высказана оригинальная идея использования естественных спут­ников Марса — Фобоса и Деймоса - в качестве основы для "космического эскалатора". Для этого с Фобоса и Деймоса в направлении к Марсу и от Марса выпускаются тросы длиной несколько тысяч километров. Такая возможность, как и в случае Луны, обусловлена неизменной ориентацией этих спутников в орбитальных осях, а также слабостью их собственного гравитационного поля. Спутник, поднимающий грузы с поверхности Марса, сначала прибы­вает на нижний конец тросовой системы Фобоса, затем передвигается вдоль троса на ее верхний конец и перелетает на нижний конец тросовой системы Деймоса. С ее верхнего конца спутник выходит уже на траекторию межпла­нетного перелета. Система тросов из кевлара погонной массой ~20 кг/км и общей массой ~300 т дает экономию 10 т топлива на каждом запуске 20 т полезной нагрузки. Конечно, "марсианский эскалатор" —дело завтрашнего дня. Однако уже сегодня марсианская автоматическая стан­ция может быть оснащена зондом, выпускаемым на тросе на удаление 50 км от основного спутника для измерения градиентов параметров плаз­мы и магнитного поля. С той же целью с посадочного аппарата на Фобосе можно развернуть гирлянду датчиков, соединенных последовательно тросами суммарной длиной 50-60 км при массе не более 1 кг.

Сцепление космического аппарата тросом с малыми телами Солнечной системы авторы предлагают использовать для изменения траектории при близком прилете. Собственное гравитационное поле небольшого асте­роида недостаточно для совершения гравитационного маневра, но если "загарпунить" астероид с пролетающего космического аппарата, то сила натяжения троса с успехом заменит силу притяжения. После совершения маневра трос отцепляется и остается "на память" астероиду.

Как уже отмечалось, современные материалы не позволяют сделать земной космический лифт с приемлемыми характеристиками. Однако можно сделать его "половину", т.е. протянуть трос от геостационарной орбиты не до самой поверхности Земли, а лишь на половину этого расстоя­ния. Речь идет о геосинхронной радиальной связке, в которой верхний спутник находится несколько выше геоста­ционарной орбиты, а нижний спутник находится посредине между геоста­ционарной орбитой и Землей. Соединительный трос из высокопрочных материалов может иметь в этом случае приемлемую погонную массу ~1 кг/км (сечение ~1 мм^2). Привлекательной в этом проекте является возможность иметь геостационарный спутник на высоте, вдвое меньшей высоты геостационарной орбиты.

Для индустриализации космоса могут потребоваться большие произ­водственные комплексы. На рис. Такой комплекс в виде кольца из большого числа производственных, исследовательских и жилых модулей, соединенных последовательно тросами. Такое соединение позволяет расположить модули на близком расстоянии друг от друга, что невозможно в свободном полете из-за неизбежного рассогласовагия скоростей и относительного дрейфа соседних модулей, приводящего к их столкновению. В устойчивом кольце связанных тро­сами спутников такой дрейф не происходит.

Имеются и менее грандиозные проекты локальных "созвездий" спут­ников и космических платформ, стабилизируемых в вертикальном направлении гравитационным градиентом, а в горизонтальном направле­нии - вращением или разностью аэродинамических сил.

Этот список можно еще продолжить. Тем более, что обсуждение каж­дого варианта применения тросовых систем в космосе рождает новые варианты: заряд "тросовых" идей еще далеко не исчерпан. Конечно, не все они равнозначны по предоставляемым выгодам, затратам и срокам на реализацию. Так, перспектива применения тросовых систем представляется более отдаленной, чем применение систем с электромагнитным взаимодействием троса или системы с атмо­сферным зондом. Тем не менее исследование динамики этих систем наряду с системами ближайшей перспективы ни в коей мере не является преждевременным. Более того, оно необходимо для глубокого и всестороннего понимания реальных возможностей использования тро­сов в космосе и создания более полного динамического Портрета этого нового класса космических систем.




2019-08-14 399 Обсуждений (0)
КОСМИЧЕСКИЕ ТРОСОВЫЕ СИСТЕМЫ: ВЗГЛЯД ИНЖЕНЕРА И МЕХАНИКА 0.00 из 5.00 0 оценок









Обсуждение в статье: КОСМИЧЕСКИЕ ТРОСОВЫЕ СИСТЕМЫ: ВЗГЛЯД ИНЖЕНЕРА И МЕХАНИКА

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (399)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)