Мегаобучалка Главная | О нас | Обратная связь


ПРОЕКТИРОВАНИЕ ВЫХОДНЫХ ЦЕПЕЙ КОРРЕКции, согласования и фильтрации



2019-10-11 302 Обсуждений (0)
ПРОЕКТИРОВАНИЕ ВЫХОДНЫХ ЦЕПЕЙ КОРРЕКции, согласования и фильтрации 0.00 из 5.00 0 оценок




 

Построение согласующе-фильтрующих устройств радиопередатчиков диапазона метровых и дециметровых волн основано на использовании выходных КЦ, широкополосных трансформаторов импедансов на ферритах, полосовых трансформаторов импедансов, выполненных в виде фильтров нижних частот, фильтрующих устройств, в качестве которых чаще всего используются фильтры Чебышева и Кауэра.

 

2.1. ВЫХОДНАЯ КОРРЕКТИРУЮЩАЯ ЦЕПЬ ШИРОКОПОЛОСНОГО УСИЛИТЕЛЯ

 

При проектировании широкополосных передатчиков малой и средней мощности основной целью применения выходной КЦ усилителя этого передатчика является требование реализации постоянной в заданной полосе рабочих частот величины ощущаемого сопротивления нагрузки внутреннего генератора транзистора выходного каскада. Это необходимо для обеспечения идентичности режимов работы транзистора на разных частотах заданного диапазона, что позволяет отдавать в нагрузку не зависимое от частоты требуемое значение выходной мощности.

Поставленная цель достигается включением выходной емкости транзистора (см. рис. 1.3 и 1.4) в фильтр нижних частот, используемый в качестве выходной КЦ [2]. Принципиальная схема усилительного каскада с выходной КЦ приведена на рис. 2.1,а, эквивалентная схема включения выходной КЦ по переменному току – на рис. 2.1,б, где  – разделительный конденсатор,  – резисторы базового делителя,  – резистор термостабилизации,  – блокировочный конденсатор,  – дроссель,  – сопротивление нагрузки,  – элементы выходной КЦ,  – ощущаемое сопротивление нагрузки внутреннего генератора транзистора выходного каскада.

                       а)                                                          б)

Рис. 2.1

 

    При работе усилителя без выходной КЦ модуль коэффициента отражения | | ощущаемого сопротивления нагрузки внутреннего генератора транзистора равен [2]:

| | = ,                             (2.1)

где  – текущая круговая частота.

В этом случае относительные потери выходной мощности, обусловленные наличием , составляют величину [2]:

,                                 (2.2)

где  - максимальное значение выходной мощности на частоте  при условии равенства нулю ;

 - максимальное значение выходной мощности на частоте  при наличии .

Описанная в [2] методика Фано позволяет при заданных  и верхней граничной частоте  полосы пропускания разрабатываемого усилителя рассчитать такие значения элементов выходной КЦ  и , которые обеспечивают минимально возможную величину максимального значения модуля коэффициента отражения в полосе частот от нуля до . В таблице 2.1 приведены взятые из [2] нормированные значения элементов , , , а также коэффициент , определяющий величину ощущаемого сопротивления нагрузки  относительно которого вычисляется .

Истинные значения элементов рассчитываются по формулам:

                                 (2.3)

где =  – верхняя круговая частота полосы пропускания усилителя.

Пример 2.1. Рассчитать выходную КЦ для усилительного каскада на транзисторе КТ610А ( =4 пФ [13]), при = 50 Ом, =600 МГц. Определить  и уменьшение выходной мощности на частоте  при использовании КЦ и без нее.

Решение. Найдем нормированное значение :  =  =  = 0,7536. В таблице 2.1 ближайшее значение  равно 0,753. Этому значению  соответствуют: = 1,0; = 0,966; =0,111; =1,153. После денормирования по формулам (2.3) получим: = 12,8 нГн; = 5,3 пФ; = 43,4 Ом. Используя соотношения (2.1), (2.2) найдем, что при отсутствии выходной КЦ уменьшение выходной мощности на частоте , обусловленное наличием , составляет 1,57 раза, а при ее использовании – 1,025 раза.

 

Таблица 2.1 – Нормированные значения элементов выходной КЦ

0,1 0,2 0,3 0,4 0,5 0,180 0,382 0,547 0,682 0,788 0,099 0,195 0,285 0,367 0,443 0,000 0,002 0,006 0,013 0,024 1,000 1,001 1,002 1,010 1,020
0,6 0,7 0,8 0,9 1,0 0,865 0,917 0,949 0,963 0,966 0,513 0,579 0,642 0,704 0,753 0,037 0,053 0,071 0,091 0,111 1,036 1,059 1,086 1,117 1,153
1,1 1,2 1,3 1,4 1,5 0,958 0,944 0.927 0,904 0,882 0,823 0,881 0,940 0,998 1,056 0,131 0,153 0,174 0,195 0,215 1,193 1,238 1,284 1,332 1,383
1,6 1,7 1,8 1,9 0,858 0,833 0,808 0,783 1,115 1,173 1,233 1,292 0,235 0,255 0,273 0,292 1,437 1,490 1,548 1,605

 

2.2. ВЫХОДНОЙ СОГЛАСУЮЩИЙ ТРАНСФОРМАТОР ШИРОКОПОЛОСНОГО УСИЛИТЕЛЯ

 

    При проектировании широкополосных передатчиков средней и большой мощности одной из основных является задача максимального использования транзистора выходного каскада усилителя по выходной мощности. Оптимальное сопротивление нагрузки мощного транзистора, на которое он отдает максимальную мощность, составляет единицы ом [2]. Поэтому между выходным каскадом и нагрузкой усилителя включается трансформатор импедансов, реализуемый, как правило, на ферритовых сердечниках и длинных линиях [1–4, 14]. Принципиальная схема усилительного каскада с трансформатором импедансов, имеющим коэффициент трансформации сопротивления 1:4, приведена на рис. 2.2,а, эквивалентная схема по переменному току – на рис. 2.2,б, где  – конденсатор фильтра;  – трансформатор; ,  – элементы схемы активной коллекторной термостабилизации [15];  – транзистор выходного каскада усилителя. На рис. 2.2,в приведен пример использования трансформатора с коэффициентом трансформации 1:9.

              б)                        

                       а)                                                          в)

Рис. 2.2

 

    Согласно [16, 17] при заданном значении нижней граничной частоты  полосы пропускания разрабатываемого усилителя требуемое число витков длинных линий, наматываемых на ферритовые сердечники трансформатора, определяется выражением:

,                                   (2.4)

где d – диаметр сердечника в сантиметрах;

    N – количество длинных линий трансформатора;

     – относительная магнитная проницаемость материала сердечника;

    S – площадь поперечного сечения сердечника в квадратных сантиметрах.

    Значение коэффициента перекрытия частотного диапазона трансформирующих и суммирующих устройств на ферритовых сердечниках и длинных линиях лежит в пределах 2·104...8·104 [16, 17]. Поэтому, приняв коэффициент перекрытия равным 5·104, верхняя граничная частота  полосы пропускания трансформатора может быть определена из соотношения:

                                                  (2.5)

    При расчетах трансформаторов импедансов по соотношениям (2.4) и (2.5) следует учитывать, что реализация  более 1 ГГц технически трудно осуществима из-за влияния паразитных параметров трансформаторов на его характеристики [3].

    Требуемое волновое сопротивление длинных линий разрабатываемого трансформатора рассчитывается по формуле [16, 17]:

.                                                   (2.6)

    Методика изготовления длинных линий с заданным волновым сопротивлением описана в [18].

Входное сопротивление трансформатора, разработанного с учетом (2.4) – (2.6), равно:

.                                              (2.7)

Пример 2.2. Рассчитать , ,  трансформатора на ферритовых сердечниках и длинных линиях с коэффициентом трансформации сопротивления 1:9, если  = 50 Ом, = 5 кГц.

Решение. В качестве ферритовых сердечников трансформатора выберем кольца марки М2000НМ 20х10х5,имеющих параметры:  = 2000; d = 6 см; S = 0,5 см2. Из (2.5) – (2.7) определим: N = 3, = 16,7 Ом, = 250 МГц. Теперь по известным параметрам кольца из (2.4) найдем: n=16,7. То есть для создания трансформатора импедансов с = 5 кГц необходимо на каждом ферритовом кольце намотать не менее 17 витков. Длина одного витка длинной линии, намотанной на ферритовое кольцо, равна 3 см. Умножая это значение на 17, получим, что минимальная длина длинных линий должна быть не менее 51 см. С учетом необходимости соединения длинных линий между собой, с нагрузкой и выходом усилителя, следует длину каждой длинной линии увеличить на
2...3 см.

 

2.3. ВЫХОДНОЙ СОГЛАСУЮЩИЙ ТРАНСФОРМАТОР полосового УСИЛИТЕЛЯ

 

    При проектировании полосовых передатчиков средней и большой мощности, также как и при проектировании широкополосных, одной из основных является задача максимального использования по выходной мощности транзистора выходного каскада усилителя. Однако в этом случае между выходным каскадом и нагрузкой усилителя включается трансформатор импедансов, выполненный в виде фильтра нижних частот [3, 19, 20]. Чаще всего он выполняется в виде фильтра нижних частот четвертого порядка [19–23]. Принципиальная схема усилительного каскада с таким трансформатором приведена на рис. 2.3,а, эквивалентная схема по переменному току – на рис. 2.3,б, где элементы  формируют трансформатор импедансов, обеспечивающий оптимальное, в смысле достижения максимального значения выходной мощности, сопротивление нагрузки транзистора и практически не влияют на форму АЧХ усилительного каскада. Методика расчета оптимального сопротивления нагрузки мощного транзистора дана в [2, 3, 24].

    Наиболее полная и удобная для инженерных расчетов методика проектирования рассматриваемых трансформаторов импедансов приведена в [25, 26]. В таблице 2.2 представлены взятые из [26] нормированные относительно  и  значения элементов  для относительной полосы рабочих частот трансформатора равной 0,2 и 0,4 и для коэффициента трансформации сопротивления  лежащего в пределах 2...30 раз, где =  – входное сопротивление трансформатора в полосе его работы, =  – средняя круговая частота полосы рабочих частот трансформатора.

                       а)                                                          б)

Рис. 2.3

 

Выбор w равной 0,2 и 0,4 обусловлен тем, что это наиболее часто реализуемая относительная полоса рабочих частот полосовых передатчиков средней и большой мощности, так как в этом случае перекрывается любой из каналов телевизионного вещания и диапазоны ЧМ и FM радиовещания [27].

 

    Таблица 2.2 – Нормированные значения элементов трансформатора

  2 3 4 6 8 10 15 20 30

 

w = 0,2

0,821 1,02 1,16 1,36 1,51 1,62 1,84 2,02 2,27
0,881 0,797 0,745 0,671 0,622 0,585 0,523 0,483 0,432

 

w = 0,4

0,832 1,04 1,19 1,40 1,56 1,69 1,95 2,15 2,46
0,849 0,781 0,726 0,649 0,598 0,559 0,495 0,453 0,399

 

    При выбранных значениях  нормированные значения элементов  определяются из соотношений [23]:

                                  (2.8)

    Истинные значения элементов  рассчитываются по формулам:

                        (2.9)

    Пример 2.3. Рассчитать элементы  трансформатора импедансов (рис. 2.3) при w = 0,2, = 20 и предназначенного для работы в FM диапазоне (88...108 МГц) на нагрузку 75 Ом.

    Решение. Из таблицы 2.2 для = 20 найдем: = 2,02, = 0,483. По формулам (2.8) определим: = 9,67, = 0,101. С учетом того, что = = 3,75 Ом, а = = 6.154·108 из (2.9) получим: = 12,3 нГн, = 208 пФ, = 58,9 нГн, = 43,7 пФ.

 

2.4. Фильтры высших гармонических составляющих полосового усилителя

 

    Выходные каскады полосовых усилителей мощности работают, как правило, в режиме с отсечкой коллекторного тока, так как в этом случае можно получить в нагрузке значительно большую мощность, чем от каскада, работающего в режиме без отсечки, при одновременном обеспечении более высокого коэффициента полезного действия [2, 3, 4, 9, 24]. Однако в этом случае сигнал на выходе усилителя оказывается не синусоидальным и содержит в своем спектре высшие гармонические составляющие, приводящие к большим внеполосным излучениям. В соответствии с требованиями ГОСТ [28, 29], уровень любого побочного (внеполосного) радиоизлучения передатчиков с выходной мощностью более 25 Вт должен быть не менее чем на 60 дБ ниже максимального значения выходной мощности радиосигнала. Указанное требование достигается установкой на выходах усилителей мощности фильтрующих устройств, в качестве которых чаще всего используются фильтры Чебышева (рис. 2.4) и фильтры Кауэра (рис. 2.5) [2, 3, 4, 30].

 

Рис. 2.4

 

Рис. 2.5

 

В таблице 2.3 представлены взятые из [31] нормированные относительно  и  значения элементов приведенных фильтров, соответствующие максимальному значению затухания в полосе пропускания равному 0,1 дБ.

 

    Таблица 2.3 – Нормированные значения элементов фильтров

  Тип ,дБ

N=5

Ч 37 1,14 1,37   1,97 1,37   1,14      
К 57 1,08 1,29 0,078 1,78 1,13 0,22 0,96      

N=6

Ч 49 1,16 1,40   2,05 1,52   1,90 0,86    
К 72 1,07 1,28 0,101 1,82 1,28 0,19 1,74 0.87    

N=7

Ч 60 1,18 1,42   2,09 1,57   2,09 1,42   1,18
К 85 1,14 1,37 0,052 1,87 1,29 0,23 1,79 1,23 0,17 1,03

При этом приняты следующие обозначения: N – порядок фильтра;  – гарантированное затухание высших гармонических составляющих на выходе фильтра; Ч – фильтр Чебышева; К – фильтр Кауэра.

Истинные значения элементов  рассчитываются по формулам:

                                         (2.10)

    Пример 2.4. Рассчитать фильтр Кауэра пятого порядка при  = 50 Ом и  = 100 МГц.

    Решение. Из таблицы 2.3 найдем, что нормированные значения элементов фильтра Кауэра пятого порядка равны:  = 1,08;  = 1,29;  = 0,078;  = 1,78;  = 1,13;  = 0,22;  = 0,96. После денормирования по формулам (2.10) получим:  = 34,4 пФ;  = 103 нГн;  = 2,5 пФ;  = 56,7 пФ;  = 90 нГн;  = 7,0 пФ;  = 30,6 пФ. Как следует из таблицы 2.3, спроектированный фильтр обеспечивает гарантированное затухание высших гармонических составляющих на выходе фильтра равное 57 дБ.

 

3. ПРОЕКТИРОВАНИЕ ЦЕПЕЙ ФОРМИРОВАНИЯ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК

 

    Цепи формирования амплитудно-частотных характеристик (АЧХ) служат для реализации максимально возможного для заданного схемного решения коэффициента усиления усилительного каскада при одновременном обеспечении заданного допустимого уклонения его АЧХ от требуемой формы. К ним относятся межкаскадные и входные корректирующие цепи (КЦ). Необходимость выполнения указанного требования обусловлена тем, что коэффициент усиления одного каскада многокаскадного усилителя мощности метрового и дециметрового диапазона волн не превышает 3-10 дБ [5, 19, 20]. В этом случае увеличение коэффициента усиления каждого каскада, например, на 2 дБ, позволяет повысить коэффициент полезного действия всего усилителя мощности в 1,2-1,5 раза [32].

    Задача нахождения значений элементов КЦ, обеспечивающих максимальный коэффициент усиления каскада, в каждом конкретном случае может быть решена с помощью программ оптимизации. Однако наличие хорошего начального приближения значительно сокращает этап последующей оптимизации или делает его излишним [3, 20, 33].

    Рассмотрим метод параметрического синтеза КЦ усилителей мощности радиопередающих устройств метрового и дециметрового диапазона волн, позволяющий по таблицам нормированных значений элементов КЦ осуществлять реализацию усилительных каскадов с максимально возможным для заданного схемного решения коэффициентом усиления при одновременном обеспечении заданного допустимого уклонения АЧХ от требуемой формы [32].

 



2019-10-11 302 Обсуждений (0)
ПРОЕКТИРОВАНИЕ ВЫХОДНЫХ ЦЕПЕЙ КОРРЕКции, согласования и фильтрации 0.00 из 5.00 0 оценок









Обсуждение в статье: ПРОЕКТИРОВАНИЕ ВЫХОДНЫХ ЦЕПЕЙ КОРРЕКции, согласования и фильтрации

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (302)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)