Мегаобучалка Главная | О нас | Обратная связь


Математические функции



2019-10-11 171 Обсуждений (0)
Математические функции 0.00 из 5.00 0 оценок




Интерфейс

Программа состоит из двух частей — ядра, которое, собственно, и производит вычисления, выполняя заданные команды, и интерфейсного процессора, который определяет внешнее оформление и характер взаимодействия с пользователем и системой. Основной рабочий документ программы — тетрадь, в которой поль­зователь записывает все выкладки. Вид рабочей тетради на экране монитора зависит от интерфейсного процес­сора, реализация которого для разных платформ не­сколько отличается.

Пользовательский интерфейс программы Mathemati­ca 3.0 сначала кажется несколько примитивным: инстру­ментальная панель — это просто строка меню, а отдельное окно документа выглядит как бы подвешенным . Кроме того, на инструментальной панели отсут­ствуют кнопки для выполнения часто повторяемых опе­раций, которые были в предыдущей версии.

Однако впечатление примитивности интерфейса сра­зу же исчезает, когда выясняется, что можно подключать настраиваемые кнопочные палитры, которых в програм­ме имеется больше десятка . С их помо­щью можно выполнять различные функции, а часть кно­пок соответствует специальным символам. Всего в про­грамме более 700 математических, языковых и других символов. При нажатии на кнопки с символом послед­ний переносится в рабочий документ на указанное кур­сором мести. Другие кнопки палитры соответствуют наи­менованиям ряда функций программы, которые при вы­боре вводятся в командную строку. При нажатии кнопки алгебраических преобразований предварительно выде­ленное алгебраическое выражение трансформируется в соответствии с названием выбранной команды, напри­мер упрощается командой simplify.

Программа позволяет применять различные стили для оформления документа на экране и вывода его на пе­чать, причем в новой версии стилей может быть значи­тельно больше, чем в предыдущей. Для их изменения предусмотрена специальная палитра.

Программа дает возможность отображать математи­ческие символы с достаточно высоким полиграфическим качеством в тексте на экране, в командах, а также при вы­воде на печать . Увеличено количество опций. Возможно создание гипертекстовых связей.

Рабочую тетрадь можно сохранять в HTML-формате, а также в формате полиграфического языка LaTex и неко­торых других.

Усовершенствована и расширена система подсказок, имеется интерактивный доступ к полному тексту элек­тронной версии документации, которая состоит из инст­рукции пользователя, справочника по стандартным до­полнениям, учебника для начинающих и демонстраци­онных файлов.

Меню окна справки очень хорошо продума­но, что позволяет получить информацию различными путями. Можно получить справку по интересующей теме или функции, а также просмотреть текст всех документов, содержащих введенное ключевое слово.

Аналитические расчеты

Умение проводить аналитические расчеты — одно из главных достоинств этой программы, автоматизирующей математические расчеты. Mathematica умеет преобразо­вывать и упрощать алгебраические выражения, диффе­ренцировать и вычислять определенные и неопределен­ные интегралы, вычислять конечные и бесконечные сум­мы и произведения, решать алгебраические и дифферен­циальные уравнения и системы, а также разлагать функ­ции в ряды и находить пределы .Кроме того, Mathematica имеет стандартные дополнения для аналитических рассчетов, которые будут рассмотрены ниже.

Следует заметить, что возможности каждой новой вер­сии программы качественно возрастают. В версии 3.0 про­граммы команда упрощения алгебраических выражений Simplify дополнена значительно более мощной командой FullSimplify, которая позволяет обрабатывать математи­ческие выражения, включающие специальные функции

Расширен спектр математических выражений, для ко­торых аналитически находятся неопределенные и опреде­ленные интегралы. Появилась также возможность задавать область изменения параметров в подынтегральных выра­жениях, что позволяет интегрировать многие выражения, которые в общем случае не имеют первообразной.

 Значительно возросло число различных (конечных и бесконечных) сумм и произведений, вычисляемых ана­литически, а также аналитически решаемых обыкновен­ных дифференциальных уравнений и уравнений в част­ных производных .

Из числа других улучшений можно выделить повы­шение скорости решения задач линейной алгебры.

 

Численные методы

Для тех задач, которые невозможно решить аналити­чески, Mathematica 3.0 предлагает большое количество эффективных алгоритмов для проведения численных расчетов. Она позволяет находить конечные и бесконеч­ные суммы и произведения, вычислять интегралы, решать алгебраические и дифференциальные уравнения и системы, задачи оптимизации (линейного программиро­вания, нахождения экстремумов функций), а также зада­чи математической статистики. При численном решении математических задач на­ряду с правильностью алгоритмов расчета особую роль играет точность вычислений. В Mathematica 3.0 реализо­ван адаптивный контроль точности, основанный на вы­боре внутренних алгоритмов, позволяющих ее максими­зировать. В этой версии программы повышена эффективность одно и многомерной интерполяции, оптимизированы алгоритмы численного решения дифференци­альных уравнений Добавлены многократное численное интегрирование) а также численное дифференцирование Оптимизированы алгоритмы нахождения экстремумов Поддерживается арифметика интервалов (рис 6)

Осуществлен независимый от конкретной компьютернои платформы механизм ввода и вывода числовых данных без потери точности.

Математические функции

Мathernatica 3.0 позволяет включать  в расчеты все известные элементарные функции, а также сотни специ­альных встроенных функций . Разумеется, пользователь программы может вводить и свои функции как для применения в течение одного сеанса работы так и для постоянного использования. В новой версии 3.0 добавлены интегралы Френеля ин тегральные гиперболические синус и косинус, обратная функция ошибок, ãàììa и бета функции, дополнительная функция Вейерштрасса, эллиптические и родственные с ними функции, функции Матье .Введены числа и полиномы Фибоначчи .

Графика и звук

Mathernatica позволяет строить двух и трехмерные графики различных типов в виде точек и линии на плоскости, поверхностей, а также контурные, градиентные (dencity plot), параметрические. Имеется большое коли­чество опций оформления и настройки, например изме­нение подсветки, цвета, размеров и точки наблюдения . Mathematica выполняет построение графика в три эта­па. На первом создается множество графических прими­тивов, на втором  они преобразуются в независимое от вы­числительной платформы описание на языке PostScript, а на третьем это описание переводится в графический фор­мат для той системы, на которой установлена Mathematiса. Если первые два этапа осуществляет ядро программы, то последний — интерфейсный процессор.    Mathematica позволяет также строить серии карти­нок, которые могут быть воспроизведены как анимация. Программа содержит функции, позволяющие создавать и воспроизводить различные звуки, а также воспринимает и может анализировать некоторые типы стандартных звуковых файлов.   

 По­сле выполнения команды в рабочей тетради появляется картинка, представляющая собой график синусоид, вхо­дящих в аргумент команды, а звуковой файл (так же как и файл анимации) запоминается в документе. Это позво­ляет сразу после открытия документа воспроизвести их без повторного вычисления. В новой версии 3.0 программы заметно улучшено текстовое оформление графиков. Теперь заголовки и текст ме­ток на графиках могут быть представлены с достаточно вы­соким полиграфическим качеством (правильное изобра­жение матсматических символов). Возможно также вклю­чение в сам график форматированных текстовых строк. Ячейки рабочего документа теперь автоматически конвертируются в EPS, TIFF, GIF и другие графические форматы.

Программирование

Входной язык Mathematica содержит большое коли­чество конструкций, позволяющих для каждой конкрет­ной задачи выбрать оптимальный метод программирова­ния. Помимо обычного процедурного программирова­ния с применением условных переходов и операторов цикла, имеется еще несколько методов.

• основанный на операциях со списками , этот метод использует особенности универсального объекта программы — списка выражений, с которыми можно производить математические операции, как с алгебра­ическими выражениями, при этом заданные операции выполняются всеми элементами списка,

 • основанный на операциях над строками (string-based),

• функциональною программирования (functional programming), позволяющий создавать сложные функции и последовательности вложенных функций;

 • на базе правил преобразования выражений (rule-based);

• объектно-ориентированный (object-oriented)  .

В каждой конкретной программе пользователь может одновременно применять несколько методов или даже все перечисленные. Серьезным недостатком предыдущей версии про­граммы было неэкономное использование памяти ком­пьютера. В третьей версии программы типичные опера­ции ядра осуществляются быстрее и с меньшим исполь­зованием памяти, чем во второй Для ускорения загрузки уменьшено количество первоначально загружаемых в па­мять функций Введены новые мощные операторы символьного про­граммирования и усовершенствованные операторы для манипулирования строками. Появилась возможность компилировать вычисляе­мые выражения и процедуры При этом скорость вы­числений может быть сравнима со скоростью такой же процедуры, написанной на языке Си или Фортран, или даже выше.   



2019-10-11 171 Обсуждений (0)
Математические функции 0.00 из 5.00 0 оценок









Обсуждение в статье: Математические функции

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (171)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)