Мегаобучалка Главная | О нас | Обратная связь


Микросомальное окисление. Локализация и значение процесса в обмене веществ. Роль цитохрома Р450



2019-11-13 511 Обсуждений (0)
Микросомальное окисление. Локализация и значение процесса в обмене веществ. Роль цитохрома Р450 0.00 из 5.00 0 оценок




 

Микросомальное окисление содержит цитохромы Р-450 и b5. Эта система играет большую роль в обезвреживании многих токсинов и лекарств путем их гидроксилирования. R-H → R-OH. При этом часто образуется пероксид водорода, который разрушается каталазой. На его долю приходится 5-10 % кислорода, поступающего в организм. АТФ во внемитохондриальном окислении никогда не образуется. Существуют 2 типа внемитохондриального окисления. Окисление оксидазного типа. Ферменты - оксидазы. По строению являются металлофлавопротеинами. Содержат металлы с переменной валентностью - железо(Fe), медь(Cu), молибден(Mo). Находятся оксидазы в пероксисомах - особых образованиях эндоплазматического ретикулюма, а также в наружной мембране митохондрий. Отнимают водород от субстрата и передают его на кислород с образованием Н2О2 - перекиси водорода . Моноаминоксидазы (МАО) - окисляют гормон адреналин и некоторые биогенные амины. Диаминоксидазы (ДАО) - окисляют гистамин и другие диамины и полиамины. Оксидаза L-аминокислот. Оксидаза D-аминокислот. Ксантиноксидаза - окисляет пуриновые азотистые основания (аденин и гуанин) с участием воды. Биологическое значение окисления по оксидазному типу: окисляются трудноокисляемые циклические вещества; быстрая инактивация БАВ - биологически активных веществ; образующаяся Н2О2 оказывает бактерицидное действие - разрушает клеточные мембраны фагоцитированных бактериальных клеток. Окисление оксигеназного типа. Происходит на мембранах эндоплазматического ретикулума и во внутренней мембране митохондрий. Ферменты - оксигеназы. Они активируют молекулу кислорода, а затем внедряют один или два атома кислорода в молекулу окисляемого вещества. Цитохром Р450. Его строение отличается от строения цитохромов цепи митоходриального окисления. Цитохром Р450 – гемопротеин, содержит простетичесую группу – гем, и имеет участки связывания для О2 и субстрата (ксенобиотика). Молекулярный О2 в триплетном состоянии инертен и не способен взаимодействовать с орган соединениями. Чтобы сделать О2 реакционоспособным необходимо его превратить в синглетный, используя ферментные системы его восстановления (моноксигеназная система).

Мультиферментный комплекс формирует цепь переноса электронов и протонов, в конце ее происходит активация кислорода. Активированный кислород присоединяется к активному центру цитохрома Р450, и на него переносятся электроны, а затем этот кислород включается в молекулу субстрата. Примеры реакций оксигеназного типа окисления. Монооксигеназы (гидроксилазы) включают в окисляемое вещество один атом кислорода из молекулы О2, а другой атом кислорода соединяется с двумя атомами водорода, отнятыми у какого-либо восстановителя (обычно - НАДФН2, реже - у других: например, у витамина "С"). Источник водорода - НАДФН2..

 

18. Углеводы. Классификация. Моно-, олиго-, полисахариды (гомо- и гетерополисахариды). Строение. Биологическая роль. Катаболизм в желудочно-кишечном тракте.  

Углеводами называются альдегиды или кетоны многоатомных спиртов или их производных. Углеводы классифицируются на: 1. моносахариды-производные многоатомных спиртов, содержащие карбоксильную группу. 2. олигосахариды – состоят из 2–12 моносахаридов, соединенных между собой гликозидными связями (мальтоза – 2 глюкозы, лактоза – галактоза и глюкоза, сахароза – глюкоза и фруктоза) 3. полисахариды-высокомолекулярные продукты поликонденсации моносахаридов,связанных друг с другом гликозидными связями и образующих линейные и разветвленные цепи. Углеводы входят в состав клеток животных (до 2%) и растений (до 80%). Биологическая роль: 1. энергитическая. На долю углеводов приходится около 70% всей калорийности. 2. структурная. Углеводы используются как пластический материал для образования структурно-функциональных компонентов клеток. К ним относятся пентозы нуклеиновых кислот, углеводы гликопротеинов, гетерополисахариды межклеточного вещества; 3. резервная. Могут откладываться про запас в печени, мышцах в виде гликогена; 4. защитная. Гликопротеины принимают участие в образовании антител. Гетерополисахариды участвуют в образовании вязких секретов (слизи), покрывающих слизистые оболочки ЖКТ, дыхательных и мочеполовых путей. Гиалуроновая кислота играет роль цементирующего вещества соединительной ткани, препятствующего проникновению чужеродных тел; 5. регуляторная. Некоторые гормоны – гликопротеины (гипофиза, щитовидной железы); 6. участвуют в процессах узнавания клеток (сиаловая и нейраминовая кислоты); 7. определяют группу крови, входя в состав оболочек эритроцитов; 8. участвуют в процессах свертываемости крови, входя в состав гликопротеинов крови, фибриногена и протромбина. Так же предупреждает свёртываемость крови, входя в состав гепарина.

ПЕРЕВАРИВАНИЕ УГЛЕВОДОВ Метаболизм (обмен) углеводов в организме человека состоит в основном из следующих процессов: 1. Расщепление в пищеварительном тракте поступающих с пищей полисахаридов и дисахаридов до моносахаридов. Всасывание моносахаридов из кишечника в кровь. 2. Синтез и распад гликогена в тканях, прежде всего в печени. 3. Гликолиз. Понятие «гликолиз» означает расщепление глюкозы. Первоначально этим термином обозначали только анаэробное брожение, завершающееся образованием молочной кислоты (лактата) или этанола и СО2. В настоящее время понятие «гликолиз» используется более широко для описания распада глюкозы, проходящего через образование глю-козо-6-фосфата, фруктозобисфосфата и пирувата как в отсутствие, так и в присутствии кислорода. В последнем случае употребляют термин «аэробный гликолиз» в отличие от «анаэробного гликолиза», завершающегося образованием молочной кислоты (лактата). 4. Аэробный путь прямого окисления глюкозы или, как его называют, пентозофосфатный путь (пентозный цикл). 5. Взаимопревращение гексоз. 6. Аэробный метаболизм пирувата. Этот процесс выходит за рамки углеводного обмена, однако может рассматриваться как завершающая его стадия: окисление продукта гликолиза – пирувата. 7. Наконец, важным является процесс глюконеогенеза, или образование углеводов из неуглеводных продуктов. Такими продуктами являются в первую очередь пировиноградная и молочная кислоты, глицерин, аминокислоты и ряд других соединений.

 

 

19. Анаэробный распад углеводов в тканях. Последовательность реакций. Регуляция. Гликолитическая оксидоредукция. Молочнокислое и другие виды брожения. Значение анаэробного распада глюкозы в организме

Сущность анаэробного распада углеводов заключается в расщеплении активированной глюкозы на 2 молекулы молочной кислоты. Образующаяся энергия расходуется в виде тепла, накапливается в макроэргических соединениях типа АТФ. При гликолизе образуются 2, а при гликогенолизе — 3 мо­лекулы АТФ. Гликогенолиз начинается с отщепления от гликогена под действием фермента фосфорилазы одной молекулы глюкозы в виде глюкозо-1-фосфата, который превращается в глюкозо-6-фосфат.При гликолизе глюкоза гексокиназой при участии АТФ превращается в глюкозо-6-фосфат. В даль­нейшем глюкозо-6-фосфат превращается во фруктозо-1,6-ди-фосфат, который под действием фермента альдолазы рас­щепляется на 2 молекулытриоз (моносахаридов, состоящих из 3 углеродных атомов) — фосфоглицериновый альдегид и фосфодиоксиацетон . Следующий этап— это окис­лительно-восстановительная реакция, в ходе которой обра­зуются две молекулы 1,3-дифосфоглицериновой кислоты. Дифосфоглицериноваякислота отдает свою энергию на образование 2 молекул АТФ, а сама превращается в3-фосфоглицериновую кислоту.

     Процесс циклического восстановления и окисления НАД в реакциях анаэробного окисления глюкозы получил название гликолитическая оксидоредукция. Брожение – анаэробное дыхание, при котором микроорганизмы используют выделяющуюся энергию для своей жизнедеятельности.       При спиртовом брожении молекула гексозы распадается на этанол и углекислый газ. В ходе брожения образуется много промежуточных продуктов — гексозомонофосфат, фруктозодифосфат, фосфотриозы, фосфоглицериновая кислота, фосфопировиноградная кислота, пировиноградная кислота, уксусный альдегид и, наконец, этиловый спирт. Уксуснокислое брожение — биологический окислительный процесс, при котором с помощью уксуснокислых бактерий спирт окисляется в уксусную кислоту. Молочнокислое брожение — широко распространенное биохимическое явление, давно известное на примере скисания молока. Под влиянием молочнокислых бактерий лактоза расщепляется на глюкозу и галактозу, которые затем специфическими ферментами превращаются в молочную кислоту. Свертывание молока происходит вследствие того, что молочная кислота отщепляет кальций от казеина, белок превращается в параказеин и выпадает в осадок. Маслянокислое брожение —биохимический процесс расщепления углеводов, в ряде случаев жиров и белков, на масляную кислоту, углекислоту и воду, при этом образуется— уксусная, молочная, пропионовая и другие кислоты.

 

20. Распад глюкозы в аэробных условиях. Эффект Пастера. Окислительное декарбоксилирование пировиноградной кислоты и цикл трикарбоновых кислот. Последовательность реакций. Связь с процессом тканевого дыхания.

 Аэробным гликолизом называют процесс окисления глюкозы до пировиноградной кислоты, протекающий в присутствии кислорода.

 1. Этапы аэробного гликолиза. В аэробном гликолизе можно выделить 2 этапа. 1 Подготовительный этап, в ходе которого глюкоза фосфорилируется и расщепляется на две молекулы фосфотриоз с использованием 2 молекул АТФ. 2 Этап, сопряжённый с синтезом АТФ. В результате этой реакций фосфотриозы превращаются в пируват. Энергия, высвобождающаяся на этом этапе, используется для синтеза 10 моль АТФ

 2. Реакции аэробного гликолиза. Превращение глюкозо-6-фосфата в 2 молекулы глицеральдегид-3-фосфата. Глюкозо-6-фосфат, образованный в результате фосфорилирования глюкозы с участием АТФ, превращается в фруктозо-6-фосфат. Затем следует ещё одна реакция фосфорилирования с использованием фосфатного остатка и энергии АТФ. В ходе этой реакции, катализируемой фосфофруктокиназой, фруктозо-6-фосфат превращается в фруктозо-1,6-бисфосфат. .Фруктозо-1,6-бисфосфат далее расщепляется на 2 триозофосфата: глицеральдегид-3-фосфат и дигидроксиацетонфосфат. Реакцию катализирует фермент фруктозобисфосфатальдолаза, или просто альдолаза. Этот фермент катализирует как реакцию альдольного расщепления, так и альдольной конденсации, т.е. обратимую реакцию. Продукты реакции альдольного расщепления - изомеры. В последующих реакциях гликолиза используется только глицеральдегид-3-фосфат, поэтому дигидроксиацетонфосфат превращается с участием фермента триозофосфатизомеразы в глицероальдегид-3-фосфат . Превращение глицеральдегид-3-фосфата в пируват. Окисление глицеральдегид-3-фосфата приводит к восстановлению NAD и образованию с участием Н3РО4 высокоэнергетической ангидридной связи в 1,3-бисфосфоглицерате в положении . В следующей реакции высокоэнергетический фосфат передаётся на АДФ с образованием АТФ. Образованный 3-фосфоглицерат уже не содержит макроэргической связи. Внутримолекулярные преобразования заключаются в переносе фосфатного остатка из положения 3 в фосфоглицерате в положение 2. Затем от образовавшегося 2-фосфоглицерата отщепляется молекула воды при участии фермента енолазы. В результате реакции образуется замещённый енол - фосфоенолпируват. Превращение фосфоенолпирувата в пируват . Окисление пирувата до ацетил-КоА происходит при участии ряда ферментов и коферментов, объединенных структурно в мультиферментную систему, получившую название «пируватдегидрогеназный комплекс».

Процесс окислительного декарбоксилирования пирувата происходит в митохондрий. В нем принимают участие 3 фермента (пируватдегидрогеназа, дигидролипоилацетилтрансфераза, дигидролипоилдегидрогеназа) и 5 коферментов (ТПФ, амид липоевой кислоты, коэнзим А, ФАД и НАД), Суммарную реакцию: Пируват + НАД+ + HS-KoA = Ацетил-КоА + НАДН + Н+ + СO2.. Образовавшийся в процессе окислительного декарбоксилирования ацетил-КоА подвергается окислению с образованием СО2 и Н2О. Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот (цикл Кребса). Этот процесс, происходит в митохондриях .

 

 



2019-11-13 511 Обсуждений (0)
Микросомальное окисление. Локализация и значение процесса в обмене веществ. Роль цитохрома Р450 0.00 из 5.00 0 оценок









Обсуждение в статье: Микросомальное окисление. Локализация и значение процесса в обмене веществ. Роль цитохрома Р450

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (511)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)