Мегаобучалка Главная | О нас | Обратная связь


Многофакторный корреляционно – регрессионный анализ безработицы



2019-11-20 235 Обсуждений (0)
Многофакторный корреляционно – регрессионный анализ безработицы 0.00 из 5.00 0 оценок




 

Таблица 10. Исходные данные.

год

Уровень безраб-цы Индекс ВРП  Доход на душу насел-я Доля пенсионеров

1992

5,8

77,3

51,7

18,7

1993

5,9

93,3

137,4

19,6

1994

9,8

85,5

11,2

20,2

1995

12,7

86,2

83,7

20,9

1996

14,9

93,5

89,6

21,5

1997

21,3

102,2

130,5

22,1

1998

22,2

94,2

72,2

22,5

1999

17,3

108

99,9

22,8

2000

19,1

104,9

111,2

22,9

2001

18,4

106,4

110,2

23,2

2002

15,4

106,4

121,5

23,3

2003

16,8

106,7

104,5

23,3

2004

15,3

103,7

104,4

23,5

2005

12

104,8

111,3

23,8

итого

206,9

1373,1

1339,3

308,3

средн

14,779

98,079

95,664

22,0214

 

Для корреляционно-регрессионного анализа необходимо из нескольких факторов произвести предварительный отбор факторов для регрессионной модели. Сделаем это по итогам расчета коэффициента корреляции. А именно возьмем те факторы, связь которых с результативным признаком будет выражена в большей степени. Начнем наш анализ с рассмотрения следующих факторов:

- Индекс ВРП - x1 (%)

- Доход на душу населения – x2 (%)

- Доля пенсионеров - x3 (%)

Рассчитаем коэффициент корреляции для линейной связи и для имеющихся факторов - x1, x2 и x3. Коэффициент корреляции определяется по следующей формуле:

где:  и  – дисперсии факторного и результативного признака соответственно; xy – среднее значение суммы произведений значений факторного и результативного признака; x и y – средние значения факторного и результативного признака соответственно.

Для фактора x1 получаем коэффициент корреляции r1: r1= 0,627

Для фактора x2 получаем коэффициент корреляции r2: r2 =0,295

Для фактора x3 получаем коэффициент корреляции r3: r3=0,717

По полученным данным можно сделать вывод о том, что:

1)Связь между x1 и y прямая (так как коэффициент корреляции положительный) и умеренно сильная. Поэтому, будем использовать фактор в дальнейших расчётах.

2)Связь между x2 и y прямая (так как коэффициент корреляции положительный) и умеренная, так как она находится между 0,21 и 0,30. Таким образом, возникает необходимость исключить данный фактор из дальнейших исследований.

3)Связь между x3 и y прямая (так как коэффициент корреляции положительный) и сильная. Также будем использовать данный фактор в дальнейших расчетах.

Таким образом, два наиболее влиятельных фактора - индекс ВРП и доля пенсионеров. Для имеющихся факторов x1 и x3 составим уравнение множественной регрессии. Для анализа воспользуемся линейной формой связи, т.е. составим линейное уравнение, т.к. линейное уравнение легче подвергать анализу, интерпретации.

Проверим факторы на мультиколлинеарность, для чего рассчитаем коэффициент корреляции rx1x3:

где:  и  – дисперсии факторного и результативного признака соответственно; x,y – среднее значение суммы произведений значений факторного и результативного признака; x и y – средние значения факторного и результативного признака соответственно.

Подставив имеющиеся данные (из таблицы 10) в формулу, имеем следующее значение: rx1x3=0,8998. Полученный коэффициент говорит об очень высокой связи, поэтому дальнейший анализ по обоим факторам вестись не может. Однако в учебных целях продолжим анализ.

Проводим оценку существенности связи с помощью коэффициента множественной корреляции:

где: ryx1 – коэффициент корреляции между y и x1; ryx3 – коэффициент корреляции между y и x3; rx1x3 – коэффициент корреляции между x1 и x3.

Подставив имеющиеся данные в формулу и получим: R=0,717

Так как R < 0,8, то связь признаем не существенной, но, тем не менее, в учебных целях, проводим дальнейшее исследование.

 

Уравнение прямой имеет следующий вид: ŷ = a + bx1 + cx3

Для определения параметров уравнения необходимо решить систему:

Решив систему, получим уравнение: Ŷ=14,72+0,00023 x1+0,00086x3

Для данного уравнения найдем ошибку аппроксимации:

А> 5%, то данную модель нельзя использовать на практике.

Проведем оценку параметров на типичность. Рассчитаем значения величин:

S2=28,039

ma=1,415; mb=0,023; mс=0,8404;

ta=10,403; tb=0,01; tc=0,001.

Сравним полученные выше значения t для α = 0,05 и числа степеней свободы (n-2) с теоретическим значением t-критерия Стьюдента, который tтеор = 2,1788. Расчетные значения tb и tс < tтеор, значит данные параметры не значимы и данное уравнение не используется для прогнозирования.

Далее оценим существенность совокупного коэффициента множественной корреляции на основе F-критерия Фишера по формуле:

 

где: n – число уровней ряда; к – число параметров; R – коэффициент множественной корреляции.

После расчета получаем: F=5,819

Сравним Fрасч с Fтеор для числа степеней свободы U1 = 9 и U2 = 2, видим, что 0,045 < 19,40, то есть Fрасч < Fтеор - связь признаётся не существенной, то есть корреляция между факторами x1, x3 и у не существенна.

 



2019-11-20 235 Обсуждений (0)
Многофакторный корреляционно – регрессионный анализ безработицы 0.00 из 5.00 0 оценок









Обсуждение в статье: Многофакторный корреляционно – регрессионный анализ безработицы

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (235)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)