Мегаобучалка Главная | О нас | Обратная связь


Тип цифровой видеокамеры



2019-12-29 247 Обсуждений (0)
Тип цифровой видеокамеры 0.00 из 5.00 0 оценок




Тип видеокамеры определяет ее основные характеристики и тип носителя.

В цифровых камерах с фоточувствительной матрицы снимается аналоговый сигнал, преобразуется в цифровой (в виде нулей и единиц) и записывается на носитель (видеокассету, DVD, жесткий диск или Flash). Работа с видеозаписями на цифровых носителях намного удобнее, чем работа с аналоговыми видеокассетами. При перезаписи с одного цифрового носителя на другой не происходит ухудшение качества изображения. С цифровой видеокамеры снятый видеоролик можно переписать на компьютер и отредактировать его с помощью специальных программ.

Цифровые видеокамеры делятся на следующие типы: Digital8, microMV, MiniDV, DVD, HDD, Flash, DVCAM, HDCAM, XDCAM, HD (HighDefinition - ТВ высокого разрешения, который делится на два подкласса HDV и AVCHD)

Digital8 - цифровой стандарт, разработанный компанией Sony. Он обеспечивает качество изображения в 500 линий по горизонтали в формате DV. В качестве носителя используются те же 8-мм кассеты, что использовались в аналоговых видеокамерах Hi8, на одну кассету можно записать до 60 минут видео. Возможна запись двух или четырех каналов звука.

Преимущества: На камерах формата Digital8 можно воспроизводить записи с аналоговых кассет Video8 и Hi8.

Недостатки: Камеры отличаются большим весом и габаритами. На сегодняшний день видеокамеры формата Digital8 не получили широкого распространения. Sony эти камеры больше не выпускает.

MICROMV - цифровой стандарт, разработанный компанией Sony. В видеокамерах этого формата используются миниатюрные кассеты (они намного меньше, чем miniDV-кассеты), что позволяет уменьшить их габариты и вес. В видеокассетах MICROMV предусмотрено использование встроенной памяти, в которой хранится информация о записанных видеороликах.

Стандарт MICROMV использует метод сжатия видеосигнала MPEG2, скорость цифрового видеопотока составляет 12 Мбит/с.

Для передачи цифрового видеосигнала используется интерфейс FireWire (другие названия IEEE 1394, DV, i.LINK).

Камеры этого формата очень малы. Снимать в обычных условиях такими камерами очень неудобно, поскольку рука практически не чувствует веса камеры и постоянно «гуляет». Держать и управлять microMV-камерой тоже не очень удобно, пальцы слишком велики для них. Формат записи видео на ленту - нестандартный. Записанное на такой видеокамере видео понимает только специальная программа от Sony и для редактирования видео с этой камеры на компьютере приходится всегда конвертировать исходный видеоматериал, что отнимает время, и ухудшает качество видео. Кассеты microMV стоят в два раза дороже других кассет для цифровых камер, да и найти в продаже их очень непросто.

Не смотря на все усилия компании Sony, стандарт MICROMV, который мог быть альтернативой для стандарта miniDV, на сегодняшний день не получил широкого распространения.

MiniDV - один из самых популярных форматов цифровых видеокамер. Он обеспечивает запись видеоизображения с разрешением 720x576 (PAL). В качестве носителя используется кассеты стандарта MiniDV. Возможна запись двух или четырех каналов звукового сопровождения. Для передачи цифрового видеосигнала используется интерфейс FireWire (другие названия IEEE 1392, DV, i.LINK). Некоторые модели видеокамер MiniDV имеют AV-вход и могут оцифровывать аналоговый видеосигнал.

Преимущества: Наилучшее соотношение цена/качество. Малые размеры и вес.

Недостатки: Невозможность воспроизведения кассет MiniDV на обычных видеомагнитофонах, для перезаписи на DVD требуется компьютер или бытовой DVD-рекордер. Нет поддержки видео высокого разрешения (HD). Формат, долгое время занимавший практически монопольное положение на рынке цифровых видеокамер, теперь уходит в прошлое. Производители видеокамер постепенно сворачивают производство этих камер.

DVD. В видеокамерах этого стандарта в качестве носителя используется DVD-диск (обычно это mini DVD диаметром 8 см). На DVD записывается видео в формате MPEG2 со стандартным разрешением SD (720x576). Поток 6-8 мбит/сек. Существует разновидность DVD-видеокамер с поддержкой записи видео с высоким разрешением AVCHD (720 или 1080 линий).

Преимущества: Отснятый видеоролик можно сразу же просмотреть на обычном DVD-плеере.

Недостатки: Малое время записи на один DVD (20 минут). Видео в форматах MPEG2 и AVCHD плохо подходит для редактирования на компьютере. Высокая цена на видеокамеры с поддержкой формата AVCHD. Диски могут быть несовместимы с бытовыми DVD-плеерами.

HDD. Видеокамеры с записью видео на встроенный жесткий диск (HDD). На HDD записывается видео в формате MPEG2 со стандартным разрешением SD (720x576). Существует разновидность HDD -видеокамер с поддержкой формата записи видео с высоким разрешением AVCHD (720 или 1080 линий). Подробнее см. "Запись в AVCHD".

После съемки видеоролики с жесткого диска обычно переписываются на компьютер или на DVD-диск.

Преимущества: Продолжительное время записи на жесткий диск (5-10 часов видео высокого качества).

Недостатки: Видео в форматах MPEG2 и AVCHD плохо подходит для редактирования на компьютере. Высокая цена на видеокамеры с поддержкой формата AVCHD.

Flash. Видеокамеры с записью на флэш-память. Флэш-память - разновидность энергонезависимой перезаписываемой памяти. При отключении питания информация в такой памяти сохраняется. Видеокамеры могут обладать как встроенной flash-памятью, так и иметь слот для установки карт памяти.

Видеокамеры этого типа могут поддерживать запись видео в форматах MPEG2 и MPEG4. MPEG2 обеспечивает лучшее качество картинки, но видеоролик при этом занимает больше места.

Преимущества: Малый вес, малые размеры, малое энергопотребление.

Недостатки: Малое время записи. После записи видео, его необходимо переписать на жесткий диск компьютера или на DVD-диск.

DVCAM - формат профессионального цифрового видео. Запись видео осуществляется со стандартным разрешением SD (720x576). По сравнению с miniDV, DVCAM обеспечивает более надежную запись на пленку, четкий стоп-кадр, разметку и маркировку отснятых сюжетов, поддержку тайм-кодов. В качестве носителя используются кассеты DVCAM и miniDV.

Преимущества: Высокое качество изображения, высокая надежность работы.

Недостатки: Большой вес, габариты. Высокая стоимость.

HDCAM - формат профессионального цифрового видео высокого разрешения HD (1920х1080). В качестве носителя используется кассета типоразмера Betacam.

В видеокамерах этого стандарта для передачи видеоданных часто используется высокоскоростной цифровой интерфейс HD-SDI. См. "Выход HD-SDI".

Преимущества: Профессиональное качество видео высокого разрешения.

Недостатки: Большой вес, габариты. Высокая стоимость.

XDCAM - формат профессиональных видеокамер, предложенный компанией Sony. Обеспечивает запись видео с высоким разрешением HD (1080 строк). В качестве носителя используется оптический диск Professional Disc. Обеспечивает запись четырехканального звука с профессиональным качеством.

Преимущества: Профессиональное качество записи видео и звука.

Недостатки: Высокая цена, большие размеры и вес.

HDV (High Definition Video) - видеостандарт, который обеспечивает запись видео высокого разрешения (720 строк с прогрессивной разверткой или 1080 строк с чересстрочной разверткой). В качестве носителя используется кассеты стандарта MiniDV. Для передачи цифрового видеосигнала используется интерфейс FireWire (другие названия IEEE 1392, DV, i.LINK). Видеокамеры стандарта HDV обычно поддерживают запись видео со стандартным разрешением (720x576). Для отображения видео высокого разрешения лучше всего использовать HDTV-телевизоры, плазменные панели, мониторы с высокой разрешающей способностью.

Преимущества: Поддержка высокого разрешения. Малые размеры и вес. Пока остальные устройства (телевизоры, компьютеры, DVD-проигрыватели) в общей своей массе не доросли до этого формата. Но это, безусловно, будущее как профессиональной, так и любительской видеозаписи.

Недостатки: высокая цена, меньшее время записи на один носитель (по сравнению со стандартным разрешением) и малое количество бытовых плееров, способных воспроизводить записанное с видеокамеры HD-видео (HDV-кассеты, AVCHD-диски). Невозможность воспроизведения кассет MiniDV на обычных видеомагнитофонах.

AVCHD - (Advanced Video Codec High Definition, улучшенный видеокодек для видео высокой четкости) - цифровой формат записи видео высокого разрешения и многоканального звука.

Формат AVCHD был разработан совместно компаниями Sony и Panasonic в 2006 году. За основу был взят кодек H.264/AVC, который обеспечивает более эффективный алгоритм компрессии, по сравнению с известным форматом MPEG2.

Из недостатков этого формата можно отметить высокие требования к компьютеру для просмотра и редактирования видео в формате AVCHD (рекомендуется двуядерный процессор с частотой 2.8 ГГц или Pentium 4 c частотой 3.6 ГГц).

Для воспроизведения файлов в формате AVCHD придется использовать компьютер или саму видеокамеру, так как бытовых плееров, поддерживающих этот формат пока еще очень мало.

В качестве носителя для AVCHD-видео могут использоваться DVD-диск, накопитель на жестком диске (HDD), флэш-память.

 

На основе приведённых данных и анализа рынка существующей техники было отдано предпочтение наиболее распространённому в настоящее время формату стандартной чёткости (SD) записи на магнитную ленту DV и его профессиональной версии DVCAM . Этот формат так же является стандартом де-факто как у небольших видеостудий, так и у профессиональных операторов, работающих в одиночку.

Так как основное направление создаваемой лаборатории – учебное, то применение дорогих и всё ещё не ставших официально стандартизованными форматов видео высокой чёткости (HD) в данном случае не оправдано. В то же время были отмечены перспективные возможности формата (а точнее – концепции) SONY XDCAM – запись на высоконадёжный оптический диск видео в виде файлов, готовых к прямой работе, создание proxy-копий для ускоренного и группового монтажа, запись метаданных. Всё это может стать важным фактором при проектировании подобной лаборатории в ближайшем будущем, когда цены на XDCAM оборудование опустятся на приемлемый уровень.


Охрана труда.

Охрана труда - это система законодательных актов, социально-экономических, организационных, технических, гигиенических и лечебно-профилактических мероприятий и средств, обеспечивающих безопасность, сохранение здоровья и работоспособности человека в процессе труда.

Полностью безопасных и безвредных производственных процессов не существует. Задача охраны труда - свести к минимальной вероятность поражения или заболевания работающего с одновременным обеспечением комфорта при максимальной производительности труда.

В данном разделе дипломного проекта будет произведен расчет информационной нагрузки оператора ЭВМ и спроектировано оптимальное рабочее место с точки зрения эргономики.

Любой производственный процесс, в том числе работа с ЭВМ, сопряжен с появлением опасных и вредных факторов.

Опасный фактор - это производственный фактор, воздействие которого на работающего в определенных условиях приводит к травме или другому резкому внезапному ухудшению здоровья.

 Вредный фактор - производственный фактор, приводящий к заболеванию, снижению работоспособности или летальному исходу. В зависимости от уровня и продолжительности воздействия вредный производственный фактор может стать опасным.

При работе над дипломом использовались:

1. Сеть 380 В/220 В.

2. Помещения без повышенной опасности (сухие, температура +5 - 30 градусов Цельсия, относительная влажность меньше или равна 60%, коэффициент заполнения менее 0,2).

3. Компьютер (монитор LG Flatron, системный блок, клавиатура, мышь), принтер, сканер.

Характеристики монитора LG Flatron 775FT: разрешение по горизонтали (max) 1280 пикселей; разрешение по вертикали (max) - 1024 пикселей; легко регулируемые контрастность и яркость; частота кадровой развертки при максимальном разрешении - 50-160 Гц; частота строчной развертки при максимальном разрешении - 30-70 кГц.

Пользователь сидит за компьютером, значит, на него воздействует ультрафиолетовое излучение, низкочастотные магнитные поля, статическое электричество. Кроме того, компьютер подключен к сети, следовательно, существует опасность поражения электрическим током. На зрение пользователя влияет недостаточное и неправильное освещение помещения. На психику - шум и вибрации, монотонный труд. Влияет на человека и неправильная посадка за рабочим столом.

Из анализа этих факторов видна необходимость защиты от них.

Электробезопасность представляет собой систему организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Воздействие тока на человека, при прохождении через тело, бывает:

1. Термическое - нагрев тканей, окружающей среды.

2. Электролитическое - разложение крови плазмы.

3. Биологическое - раздражение нервных окончаний тканей, судорожное сокращение мышц.

4. Механическое - разрыв тканей, получение ушибов, вывихов.

Тяжесть поражения электрическим током зависит от силы тока, рода тока, частоты тока, электрического сопротивления человека, состояния окружающей среды, времени воздействия тока и индивидуальных особенностей человека.

Результатом воздействия электрического тока на человека могут быть местные электротравмы - электрические ожоги, электрические знаки, металлизация кожи, уплотнение кожи, механические повреждения и электроофтальмия, - и общие травмы - электроудары.

Наиболее опасным переменным током является ток 20 - 100 Гц. Так как компьютер питается от сети переменного тока частотой 50 Гц, то этот ток является опасным для человека.

Защиту от поражения электротоком осуществляют: обеспечением недоступности токоведущих частей от случайных прикосновений; электрическим разделением сети; устранением опасности поражения при появлении напряжения на частях машины; применением специальных электрозащитных средств; организацией безопасной эксплуатации электроустановок[1].

С током связан еще один фактор, действующий в сетях, - напряжение. Защитой от него может быть изоляция. Чтобы изоляция защищала, она должна обладать электрическим сопротивлением.

Технически от напряжения можно защититься с помощью зануления.

Зануление - это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей ЭЛУ, которые могут оказаться под напряжением. Применяется в 3-хфазных сетях с заземленной нейтралью при напряжении менее 1000В.

Основа принципа защиты занулением: защита человека осуществляется тем, что при замыкании одной из фаз на заземляющий корпус, в цепи появляется ток замыкания, который отключает от потребителя сеть. Ток короткого замыкания еще до срабатывания защиты вызывает перераспределение в сети, приводящее к снижению напряжения на корпусе относительно земли.

Рис. 21. Защитное зануление.

 

НЗП - нулевой защитный проводник.

По заданным параметрам определим возможный Jк.з.:

 (формула 1), где:

Jк.з. - ток короткого замыкания [А];

Uф - фазовое напряжение [B];

rm - сопротивление катушек трансформатора [Ом];

rнзп - сопротивление нулевого защитного проводника [Ом].

Uф = 220 В; Ом ( по паспорту )

(формула 2), где:

- удельное сопротивление материала проводника [Ом*м];

l - длина проводника [м];

s – площадь поперечного сечения проводника [мм2].

По величине  определим с каким  необходимо включить в цепь питания ПЭВМ автомат.

рмедь= 0,0175 Ом*м

 =400 м ;  =150 м ;  =50 м ;

; 9,1

 (формула 3), где K – качество автомата.

 

Отсюда следует, что для отключения ПЭВМ от сети в случае короткого замыкания или других неисправностей в цепь питания ПЭВМ необходимо ставить автомат с Jном= 8 А.

Во время работы на персональных ЭВМ при прикосновении к любому из элементов оборудования могут возникнуть разрядные токи статического электричества. Вследствие этого происходит электризация пыли и мелких частиц, которые притягивается к экрану. Собравшаяся на экране электризованная пыль ухудшает видимость, а при повышении подвижности воздуха, попадает на лицо и в легкие человека, вызывает заболевания кожи и дыхательных путей.

Особенно электростатический эффект наблюдается у компьютеров, которые находятся в помещении с полами, покрытыми синтетическими коврами.

При повышении напряженности поля Е>15 кВ/м, статическое электричество может вывести из строя компьютер.

Для защиты от статического электричества предусмотрены специальные шнуры питания с встроенным заземлением. Там, где это не используется (отсутствует розетка) необходимо заземлять корпуса оборудования.

Также для защиты от воздействия электрического тока все корпуса оборудования, клавиатура, защелки дисководов и кнопки управления выполнены из изоляционного материала.

Кроме того, защита осуществляется: проветриванием без присутствия пользователя, влажной уборкой, нейтрализаторами статического электричества, подвижность воздуха в помещении должна быть не более 0.2 м/с.

Отдельный вопрос - производственое излучение.

Дисплейные мониторы представляют собой источники интенсивных электромагнитных полей.

Электромагнитное поле создается магнитными катушками отклоняющей системы, находящимися около цокольной части электронно-лучевой трубки монитора. По данным отечественных исследователей, в районе дисплея могут образовываться электромагнитные поля радиочастот (диапазон 5—10 МГц), создаваемые системой модуляции электронного луча.

В дисплее ПЭВМ высоковольтный блок строчной развертки и выходного строчного трансформатора вырабатывает высокое напряжение до 25 кВ для второго анода электронно-лучевой трубки. А при напряжении от 5 до 300 кВ возникает рентгеновское излучение различной жесткости, которое является вредным фактором при работе с ПЭВМ (при 15 - 25 кВ возникает мягкое рентгеновское излучение). Поскольку в мониторах уже начиная с TCO95 рентгеновское излучение погашено, то в дальнейшем мы его рассматривать не будем.

Многочисленные катушки внутри монитора дают электромагнитное излучение низкой частоты. Распространяется оно в основном в стороны и назад, поскольку экран ослабляет это излучение.

Во время работы компьютера дисплей создает ультрафиолетовое излучение, при повышении плотности которого >10 Вт/м2, оно становиться для человека вредным фактором. Его воздействие особенно сказывается при длительной работе с компьютером.

Электромагнитные поля с частотой 60 Гц и выше могут инициировать изменения в клетках животных (вплоть до нарушения синтеза ДНК). В отличие от рентгеновского излучения, электромагнитные волны обладают необычным свойством: опасность их воздействия при снижении интенсивности не уменьшается, мало того, некоторые поля действуют на клетки тела только при малых интенсивностях или на конкретных частотах. Переменное электромагнитное поле, совершающее колебания с частотой порядка 60 Гц, вовлекает в аналогичные колебания молекулы любого типа, независимо от того, находятся они в мозге человека или в его теле. Результатом этого является изменение активности ферментов и клеточного иммунитета, причем сходные процессы наблюдаются в организмах при возникновении опухолей.

Степень воздействия электромагнитных излучений на оператора ЭВМ зависит от продолжительности облучения, характера и режима излучения, индивидуальных особенностей организма. Биологическое действие ЭМП является обратимым, если прекратить воздействие, но способно накапливаться в организме.

Длительное воздействие ЭМП низких частот вызывает функциональные нарушения сердечно-сосудистой и центральной нервной систем человека, некоторые изменения в составе крови. При интенсивном длительном характере излучения могут возникнуть злокачественные опухоли, катаракта глаз.

Для снижения уровня воздействия электромагнитных полей желательно пользоваться следующими мерами:

а) экранирование экрана монитора. Поверхность экрана покрывается слоем оксида олова, либо в стекло ЭЛТ добавляется оксид свинца;

б) удаление рабочего места от источника электромагнитного поля. Оператор должен находиться на расстоянии вытянутой руки от экрана монитора;

в) рациональное размещение оборудования. Необходимо располагать ПЭВМ на расстоянии не менее 1.22 м от боковых и задних стенок других мониторов;

г) ограничение времени работы за ПЭВМ. Время непрерывной работы должно составлять не более 4 ч в сутки. За неделю суммарное время работы не должно превышать 20 ч.

Ультрафиолетовое излучение - электромагнитное излучение в области, которая примыкает к коротким волнам и лежит в диапазоне длин волн ~ 200 - 400 нм.

Различают следующие спектральные области:

§ 200 - 280 нм - бактерицидная область спектра.

§ 280 - 315 нм - Зрительная область спектра (самая вредная).

§ 315 - 400 нм - Оздоровительная область спектра.

При длительном воздействии и больших дозах могут быть следующие последствия: серьезные повреждения глаз (катаракта), рак кожи, кожно-биологический эффект (гибель клеток, мутация, канцерогенные накопления), фототоксичные реакции.

Энергетической характеристикой является плотность потока мощности [Вт/м2]. Биологический эффект воздействия определяется внесистемной единицей эр: 1 эр - это поток (280 - 315 нм), который соответствует потоку мощностью 1 Вт.

Воздействие ультрафиолетового излучения сказывается при длительной работе за компьютером. Максимальная доза облучения: 7.5 мэр*ч/ за рабочую смену;  60 мэр*ч/ в сутки.

Для защиты от ультрафиолетового излучения применяют: защитные фильтры или специальные очки (толщина стекол 2мм, насыщенных свинцом); одежду из фланели и поплина; делают побелку стен и потолка (ослабляет на 45-50%).

 

Производственное освещение тоже заслуживает внимания. Рациональное освещение помещений - один из наиболее важных факторов, от которых зависит эффективность трудовой деятельности человека.

Назначение его состоит в том, чтобы: 1) снижать утомляемость, 2) увеличивать условия зрительной работы, 3) способствовать повышению производительности труда и качества продукции, 4) оказывать благоприятное воздействие на психику, 5) уменьшать уровень травматизма и увеличивать безопасность труда.

К освещению предъявляются следующие требования:

1. В рабочей зоне освещение должно быть в такой мере, чтобы рабочий имел возможность хорошо видеть процесс работы не напрягая зрение и не наклоняясь (менее чем на 0,5 метра до глаз) к объекту.

2. Освещение не должно создавать резких теней, бликов и оказывать слепящее действие. Глаза должны быть защищены от прямых источников света.

3. Спектральный состав света должен быть приближен к естественному свету.

4. Уровень освещенности должен быть достаточен и соответствовать условиям зрительной работы.

5. Уровень освещенности должен обеспечивать равномерность и устойчивость уровня освещенности.

6. Освещение не должно создавать блескости как самих источников света, так и предметов, находящихся в рабочей зоне.

Требования к освещению в вычислительных центрах:

Местное освещение не рекомендуется. Используется общее освещение. Максимальная освещенность 400 лк, блескость менее 15 ед., пульсация менее 10%.

Освещенность на поверхности стола в зоне размещения рабочего документа должна быть 300 - 500 лк. Допускается установка светильников местного освещения для подсветки документов. Местное освещение не должно создавать бликов на поверхности экрана и увеличивать освещенность экрана более 300 лк.

Следует ограничивать прямую блесткость от источников освещения, при этом яркость светящихся поверхностей (окна, светильники и др.), находящихся в поле зрения, не должна быть более 200 кд/ кв.м.

Следует ограничивать неравномерность распределения яркости в поле зрения монитором и ПЭВМ, при этом соотношение яркости между рабочими поверхностями не должно превышать 3:1 - 5:1, а между рабочими поверхностями и поверхностями стен и оборудования 10:1.

Лампы рекомендуется использовать белого света, холодного белого света, наиболее близкие к естественному свету. Мощность ламп 36-40 ВТ, температура 3000-4200 градусов Кельвина, тогда они не дают высокого ультрафиолетового излучения.

Основной поток естественного света должен быть слева. Солнечные лучи и блики не должны попадать в поле зрения работающего с ПЭВМ.

При выполнении основной работы на мониторах и ПЭВМ, уровень шума не должен превышать 65 дБА.

На рабочих местах в помещениях для размещения шумных агрегатов вычислительных машин (АЦПУ, принтеры и др.) уровень шума не должен превышать 75 дБА. Шумящее оборудование (АЦПУ, принтеры и др.), уровни шума которого превышают нормированные, должно находится вне помещения с монитором и ПЭВМ.

Снизить уровень шума в помещениях с мониторами и ПЭВМ можно использованием звукопоглощающих материалов с максимальными коэффициентами звукопоглощения в области частот 63 - 8000 Гц для отделки помещений (разрешенных органами и учреждениями Госсанэпиднадзора России), подтвержденных специальными акустическими расчетами.

    Дополнительным звукопоглощением служат однотонные занавеси из плотной ткани, гармонирующие с окраской стен и подвешенные в складку на расстоянии 15 - 20 см от ограждения. Ширина занавеси должна быть в 2 раза больше ширины окна.

К рабочему месту с ЭВМ тоже нужно отнестись серьезно:

1. Рабочие места с компьютерами должны размещаться таким образом, чтобы расстояние от экрана одного видеомонитора до тыла другого была не менее 2,0 м, а расстояние между боковыми поверхностями видеомониторов – не менее 1,2 м.

2. Экран видеомонитора должен находиться на расстоянии 600 - 700 мм, но не ближе 500.

3. Высота рабочей поверхности стола должна регулироваться в пределах 680-800 мм; при отсутствии такой возможности высота рабочей поверхности стола должна составлять 725 мм.

4. Рабочий стол должен иметь пространство для ног высотой не менее 600 мм, глубиной на уровне колен – не менее 450 мм и на уровне вытянутых ног – не менее 650 мм.

5. Рабочий стул (кресло) должен быть подъемно-поворотным и регулируемым по высоте и углам наклона сиденья и спинки, а так же – расстоянию спинки от переднего края сиденья.

6. Рабочее место должно быть оборудовано подставкой для ног, имеющей ширину не менее 300 мм, глубину не менее 400 мм, регулировку по высоте в пределах до 150 мм и по углу наклона опорной поверхности подставки до 20 градусов; поверхность подставки должна быть рифленой и иметь по переднему краю бортик высотой 10 мм.

7. Рабочее место с персональным компьютером должно быть оснащено легко перемещаемым пюпитром для документов.

8. Площадь на одно рабочее место с ПЭВМ для взрослых пользователей должна составлять не менее 6,0 кв. м., а объем не менее 20,0 куб. м.

9. Для внутренней отделки интерьера помещений с мониторами и ПЭВМ должны использоваться диффузно - отражающиеся материалы с коэффициентом отражения для потолка - 0,7 - 0,8; для стен - 0,5 - 0,6; для пола - 0,3 - 0,5.

    Поверхность пола в помещениях эксплуатации мониторов и ПЭВМ должна быть ровной, без выбоин, нескользкой, удобной.

10.  Для очистки и для влажной уборки, обладать антистатическими свойствами.

Для повышения влажности воздуха в помещениях с компьютерами следует применять увлажнители воздуха, ежедневно заправляемые дистиллированной или прокипяченной питьевой водой. Перед началом и после каждого часа работы помещения должны быть проветрены.

Самочувствие и здоровье персонала ЭВМ при исполнении выбранных методов и способов защиты от опасных и вредных факторов будут обеспечены.

 




2019-12-29 247 Обсуждений (0)
Тип цифровой видеокамеры 0.00 из 5.00 0 оценок









Обсуждение в статье: Тип цифровой видеокамеры

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (247)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)