Мегаобучалка Главная | О нас | Обратная связь


Программное обеспечение для работы с компьютерной графикой.



2019-12-29 241 Обсуждений (0)
Программное обеспечение для работы с компьютерной графикой. 0.00 из 5.00 0 оценок




Графические редакторы

Выполнила:

Пасхалидис Л.Г.

Студентка ФГСУ II курса

Научный руководитель:

Воробьев Г.А.

Содержание:

1. Введение_____________________________________________________3

2. Компьютерная графика:_________________________________________5

2.1  Растровая графика________________________________________5

2.2 Векторная графика_______________________________________6

2.3 Трехмерная (3 D ) графика__________________________________7

3. Программное обеспечение для работы с компьютерной графикой:_____11

3.1 Программы растровой графики_____________________________11

3.2 Программы векторной графики_____________________________13

4. Заключение ____________________________________________________21

5. Список используемой литературы_________________________________23

 

Введение

Представление данных на мониторе компьютера в графическом виде впервые было реализовано в середине 50-х годов для больших ЭВМ, применявшихся для научных и военных исследованиях. С тех пор графический способ отображения данных стал неотъемлемой принадлежностью подавляющего числа компьютерных систем, и особенно персональных. Графический интерфейс пользователя сегодня является стандартом «де-факто» в программном обеспечении разных классов, начиная с операционных систем.

Существует специальная область информатики. Она изучает методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов,- компьютерная графика. Она охватывает все виды и формы представления изображений, доступных для восприятия человеком или на экране монитора, или в виде копии на внешнем носителе (бумага, кинопленка, ткань и прочее). Без компьютерной графики невозможно представить себе как только компьютерный, так и обычный, вполне материальный мир. Визуализация данных находит применение в разных сферах человеческой деятельности. Для примера назовем медицину (компьютерная томография) , научные исследования (визуализация строения вещества, векторных полей и  многих других данных) , моделирование тканей и одежды, опытно-конструкторские разработки.

В зависимости от способа формирования изображений компьютерную графику принято подразделять на растровую, векторную.

Отдельным предметом считается трехмерная (3 D ) графика, изучающая приемы и методы построения объемных моделей объектов на виртуальном уровне. Как правило, в ней сочетаются как и векторный, так и растровый способы формирования изображений.

Особенности цветного охвата характеризуют черно-белая и цветная графика. На специализацию в отдельных областях указывают названия некоторых разделов: инженерная графика, Web-графика, научная графика,  компьютерная полиграфия и прочее.

На стыке компьютерных, телевизионных и кино-технологий зародилось и стремительно развивается сравнительно новая область компьютерной графики и анимации.

Хотя компьютерная графика служит всего лишь инструментом, структура и методы основаны на передовых достижениях фундаментальных и прикладных наук: математики, физики, химии, биологии, статистики, программирования и многих других. Компьютерная графика является одной из наиболее бурно развивающихся отраслей информатики. 

 

Компьютерная графика.

2.1Растровая графика.

Растр, или растровый массив (bitmap), выступает как совокупность битов, расположенных на сетчатом поле-камве. Бит может быть включен  –это его единичное состояние или выключен –это его нулевое состояние. Состояние битов можно использовать для представления черного или белого цветов, так что, соединив на канве несколько битов, можно создать изображения из черных и белых точек.

Основным элементом растрового изображения является пиксел, выражающее количество точек, приходящихся на единицу длины. При этом следует различать:

· Разрешение оригинала;

· Разрешение экранного изображения;

· Разрешение печатного изображения.

Разрешение оригинала. Это разрешение измеряется в точках на дюйм ( dots per inch – dpi ) ,также оно зависит от качества изображения и величины файла.  То есть: если выше требование к качеству, то, естественно, должно быть разрешение оригинала.

Разрешение экранного изображения. Элементарная точка растра, для экранных копий изображений, является пиксель. Размер пикселя изменяется в зависимости от экранного разрешения, находящийся в диапазоне стандартных значений, а также разрешения оригинала и масштаба изображения.

Мониторы профессионального класса, для обработки изображений с диагональю 20 - 21 дюйм, как правило, обеспечивают стандартные экранные разрешения 640х480, 800х600, 1024х768,1280х1024,1600х1200,1600х1280, 1920х1200, 1920х1600 точек. Расстояние между соседними точками люминофора у качественного монитора составляет 0,22–0,25 мм.

Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150–200 dpi, для вывода на фотоэкспонирующем устройстве 200–300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода. В случае, если твердая копия будет увеличена по сравнению с оригиналом, эти величины следует умножить на коэффициент масштабирования.

Разрешение печатного изображения и понятие линиатуры. Размер точки растрового изображения как на твердой копии (бумага, пленка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растрировании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется числом линий на дюйм (lines per inch – Ipi) и называется линиатурой.

Размер точки растра рассчитывается для каждого элемента и зависит от интенсивности тона в данной ячейке. Чем больше интенсивность, тем плотнее заполняется элемент растра. То есть, если в ячейку попал абсолютно черный цвет, размер точки растра совпадает с размером элемента растра. В этом случае говорят о 100% заполняемости. Для абсолютно белого цвета значение заполняемости составит 0%.

Основной недостаток растровой графики состоит в том, что каждое изображения для своего хранения требует большое количество памяти. Простые растровые картинки, такие как копии экрана компьютера или черно-белые изображения, занимают до нескольких сотен килобайтов памяти. Детализированные высококачественные рисунки, например, сделанные с помощью сканеров с высокой разрешающей способностью, занимают уже десятки мегабайтов. Для разрешения проблемы обработки объемных (в смысле затрат памяти) изображений используются два основных способа:

· увеличение памяти компьютера

· сжатие изображений

Другим недостатком растрового представления изображений является снижение качества изображений при масштабировании.

Векторная графика.

Векторная графика, в отличии от растрового представления, показывает описание всех своих изображений в виде линий и фигур, она может иметь закрашенные области, заполненные сплошные и градиентные цвета.  Для большинства видов изображений математическое описание является более простым способ, хотя это может показаться сложным, чем растровая графика.

В векторной графике для описания объектов используются комбинации компьютерных команд и математических формул для описания объектов. Векторная графика характеризуется комбинациями компьютерных команд и математических формул для описания объектов.  Что позволяет выявить ,где необходимо помещать реальные точки, различным устройствам компьютера, например, таким как монитор и принтер.

Векторное представление изображений также можно назвать как объективно- ориентированной или чертежной графикой. Самыми простыми объектами векторной графики являются: эллипс, квадрат, прямоугольник, ромб, линия. Также эти объекты называют примитивом. Эти объекты в их комбинациях используются для создания самых сложных изображений.

Трехмерная графика

Трехмерная графика используется во многих сферах деятельности, таких как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов, а также в других областях. В качестве примера рассмотрим наиболее сложный вариант трехмерного моделирования – создание подвижного изображения реального физического тела.

В упрощенном виде для пространственного моделирования объекта требуется:

· спроектировать и создать виртуальный каркас (“скелет”) объекта, наиболее полно соответствующий его реальной форме;

· спроектировать и создать виртуальные материалы, по физическим свойствам визуализации похожие на реальные;

· присвоить материалы различным частям поверхности объекта (на профессиональном жаргоне – “спроектировать текстуры на объект”);

· настроить физические параметры пространства, в котором будет действовать объект, – задать освещение, гравитацию, свойства атмосферы, свойства взаимодействующих объектов и поверхностей;

· задать траектории движения объектов;

· рассчитать результирующую последовательность кадров;

· наложить поверхностные эффекты на итоговый анимационный ролик.

В трехмерной графике используется такое понятие как сплайновые поверхности. Сплайновые поверхности - это геометрические примитивы, такие как прямоугольник, куб, шар, конус и прочие. Они используются для создания реалистичной модели объекта. В последнем случае применяют чаще всего метод бикубических рациональных В-сплайнов на неравномерной сетке (NURBS). Вид поверхности при этом определяется расположенной в пространстве сеткой опорных точек. Каждой точке присваивается коэффициент, величина которого определяет степень ее влияния на часть поверхности, проходящей вблизи точки. От взаимного расположения точек и величины коэффициентов зависит форма и “гладкость” поверхности в целом.

После формирования “скелета” объекта необходимо покрыть его поверхность материалами. Все многообразие свойств в компьютерном моделировании сводится к визуализации поверхности, то есть к расчету коэффициента прозрачности поверхности и угла преломления лучей света на границе материала и окружающего пространства.

Закраска поверхностей осуществляется методами Гуро (Gouraud) или Фонга (Phong). В первом случае цвет примитива рассчитывается лишь в его вершинах, а затем линейно интерполируется по поверхности. Во втором случае строится нормаль к объекту в целом, ее вектор интерполируется по поверхности составляющих примитивов и освещение рассчитывается для каждой точки.

Свет, уходящий с поверхности в конкретной точке в сторону наблюдателя, представляет собой сумму компонентов, умноженных на коэффициент, связанный с материалом и цветом поверхности в данной точке. К таковым компонентам относятся:

· свет, пришедший с обратной стороны поверхности, то есть преломленный свет (Refracted);

· свет, равномерно рассеиваемый поверхностью (Diffuse);

· зеркально отраженный свет (Reflected);

· блики, то есть отраженный свет источников (Specular);

· собственное свечение поверхности (Self Illumination).

Следующим этапом является наложение (“проектирование”) текстур на определенные участки каркаса объекта. При этом необходимо учитывать их взаимное влияние на границах примитивов. Проектирование материалов на объект – задача трудно формализуемая, она сродни художественному процессу и требует от исполнителя хотя бы минимальных творческих способностей.

После завершения конструирования и визуализации объекта приступают к его “оживлению”, то есть заданию параметров движения. Компьютерная анимация базируется на ключевых кадрах. В первом кадре объект выставляется в исходное положение. Через определенный промежуток (например, в восьмом кадре) задается новое положение объекта и так далее до конечного положения. Промежуточные значения вычисляет программа по специальному алгоритму. При этом происходит не просто линейная аппроксимация, а плавное изменение положения опорных точек объекта в соответствии с заданными условиями.

Эти условия определяются иерархией объектов (то есть законами их взаимодействия между собой), разрешенными плоскостями движения, предельными углами поворотов, величинами ускорений и скоростей. Такой подход называют методом инверсной кинематики движения. Он хорошо работает при моделировании механических устройств. В случае с имитацией живых объектов используют так называемые скелетные модели. То есть, создается некий каркас, подвижный в точках, характерных для моделируемого объекта. Движения точек просчитываются предыдущим методом. Затем на каркас накладывается оболочка, состоящая из смоделированных поверхностей, для которых каркас является набором контрольных точек, то есть создается каркасная модель. Каркасная модель визуализуется наложением поверхностных текстур с учетом условий освещения. В ходе перемещения объекта получается весьма правдоподобная имитация движений живых существ.

Наиболее совершенный метод анимации заключается в фиксации реальных движений физического объекта. Например, на человеке закрепляют в контрольных точках яркие источники света и снимают заданное движение на видео- или кинопленку. Затем координаты точек по кадрам переводят с пленки в компьютер и присваивают соответствующим опорным точкам каркасной модели. В результате движения имитируемого объекта практически неотличимы от живого прототипа.

Процесс расчета реалистичных изображений называют рендерингом (визуализацией). Большинство современных программ рендеринга основаны на методе обратной трассировки лучей (Backway Ray Tracing). Применение сложных математических моделей позволяет имитировать такие физические эффекты, как взрывы, дождь, огонь, дым, туман[1]. По завершении рендеринга компьютерную трехмерную анимацию используют либо как самостоятельный продукт, либо в качестве отдельных частей или кадров готового продукта.

Особую область трёхмерного моделирования в режиме реального времени составляют тренажеры технических средств – автомобилей, судов, летательных и космических аппаратов. В них необходимо очень точно реализовывать технические параметры объектов и свойства окружающей физической среды. В более простых вариантах, например при обучении вождению наземных транспортных средств, тренажеры реализуют на персональных компьютерах.

Самые совершенные на сегодняшний день устройства созданы для обучения пилотированию космических кораблей и военных летательных аппаратов. Моделированием и визуализацией объектов в таких тренажерах заняты несколько специализированных графических станций, построенных на мощных RISC-процессорах и скоростных видеоадаптерах с аппаратными ускорителями трехмерной графики. Общее управление системой и просчет сценариев взаимодействия возложены на суперкомпьютер, состоящий из десятков и сотен процессоров. Стоимость таких комплексов выражается девятизначными цифрами, но их применение окупается достаточно быстро, так как обучение на реальных аппаратах в десятки раз дороже.

 

Программное обеспечение для работы с компьютерной графикой.



2019-12-29 241 Обсуждений (0)
Программное обеспечение для работы с компьютерной графикой. 0.00 из 5.00 0 оценок









Обсуждение в статье: Программное обеспечение для работы с компьютерной графикой.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (241)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)