Мегаобучалка Главная | О нас | Обратная связь


Схемы получения воды для инъекций



2019-12-29 413 Обсуждений (0)
Схемы получения воды для инъекций 0.00 из 5.00 0 оценок




 

За исходную воду принимается вода очищенная.

Схема 7.1. заключается в одном процессе - дистилляции. Выбор схемы является наилучшим. Дистилляция, как метод получения воды для инъекций рекомендуется всеми международными организациями, курирующими производство лекарственных средств.

Схема 7.2. включает процесс обратного осмоса. Используя сочетание схем 6.1. и 6.2. можно получить систему получения воды для инъекций из водопроводной воды. На практике это реализуется в использовании двухступенчатой установки обратного осмоса. Получение воды для инъекций методом обратного осмоса не требует больших капитальных затрат. Недостатками этого метода является продолжительность времени обработки воды, высокие требования к мембранам и большие отходы воды.

Схема 7.3. включает комплекс процессов: деионизация, фильтрация через фильтр с диаметром отверстий 0,22 мкм.

Исходная вода для схемы 7.3. должна быть приготовлена по схемам 6.1. или 6.3. Выбор схемы позволяет экономить как капитальные, так и эксплутационные затраты.

Воду для инъекций можно получить на установках типа Milli-Q, в которых используется сочетание схем 6.1. и 6.3, что позволяет получить высокоочищенную апирогенную воду с удельным электрическим сопротивлением до 18 МОм-см при 25°С (удельное электрическое сопротивление воды для инъекций, полученной по схеме 6.2.1. - 2 МОм-см). При таком удельном электрическом сопротивлении вода обладает большой активностью, что необходимо учитывать при организации хранения воды. Выбор схемы 6.2.3. целесобразен для приготовления сред, предназначенных для культивирования клеток тканей.

В промышленных условиях воду для инъекций получают из деминерализованной воды, т.е. освобожденной от нежелательных катионов и анионов. Для получения апирогенной воды необходимо удалить микроорганизмы и пирогенные вещества – это продукты жизнедеятельности и распада микроорганизмов , микробные клетки будут удаляться при перегонке в виде капельной фазы , что проводиться разными способами :

1. например, центробежный способ улавливания капельной фазы в аквадистилляторе «Финн – аква»;

2. в термокомпрессионном аквадистилляторе капельная фаза испаряется на стенках трубок испарителя;

3. в трехступенчатом горизонтальном аквадистилляторе – капельная фаза удаляется из пара в верхней части каждого корпуса барботируется через ситчатую тарелку с постоянным слоем проточной апирогенной воды.

Для этого используют следующие аппараты : дистиллятор « Финн - аква», «термокомпрессионные аквадистилляторы», трехступенчатые горизонтальные аквадистилляторы.

Аквадистиллятор «Финн – аква» (рис .1). Принцип работы: деминерализованная вода подается через регулятор давления (1) в конденсатор – холодильник (2) ,проходит теплообменники камер (3), нагревается в зону испарения (5). Здесь вода нагревается с помощью системы трубок, обогреваемых паром изнутри, до кипения. Создается интенсивный поток пара, который направляется во второй корпус, а капли с помощью центробежной силы прислоняются к стенкам и стекают вниз. Корпус 1 обогревается техническим паром, который выводится в линию технического конденсата.

Избыток деминерализованной воды через трубку (6) подается из корпуса (1) в корпус (2) и (3).Вода из корпуса 2 по трубе 7 и корпуса 3 по трубе 8 поступает в холодильник – конденсатор (2), а потом в специальный теплообменник для дистиллята 9 , где температура 80-95 С. Воду проверяют на качество, если не соответствует, то выбрасывают. Преимущества перед другими аквадистиляторами:

1) образующемуся потоку пара придают спиралеобразное вращательное движение с большой скоростью, за счет центробежной силы капли прижимаются к стенкам аппарата и стекают в нижнюю часть испарителя;

2) в установке питающая вода подается снизу вверх;

3) дистиллят охлаждается в теплообменнике 9 до температуры 80-90С, что предотвращает рост микроорганизмов.

 


Рис. 1. Аквадистиллятор «Финн-аква».

 

Условные обозначения: 1- регулятор давления; 2- конденсатор-холодильник; 3 - теплообменники трех корпусов камер предварительного нагрева; 4- парозапорное устройство линии технического конденсата; 5- система трубок теплообменников (зона испарения); 6 – трубы для подачи избытка воды в испаритель следующего корпуса; 7-труба для слива конденсата в конденсатор-холодильник; 8 - труба для поступления вторичного пара в холодильник 2 ; 9 - специальный теплообменник для дистиллята.

Термокомпрессионный аквадистиллятор (рис. 2). Принцип работы состоит в следующем: деминерализованная вода подается в регулятор давления (4) и через регулятор уровня поступает в нижнюю часть конденсатора – холодильника (1 ) ,заполняет его межтрубное пространство и поступает в камеру предварительного нагрева (5) , а из нее - в трубки испарителя (6).Здесь вода закипает и пар заполняет межтрубное пространство (2) и откачивается компрессором (3).В камере испарения создается разряжение и вода в трубках закипает. Вторичный пар в компрессоре сжимается, проходит в межтрубное пространство и нагревает воду в трубках до кипения. В межтрубном пространстве образуется конденсат, который направляется в верхнюю часть конденсатора холодильника, охлаждается и собирается в сборник дистиллята.


Рис.2. Термокомпрессионный аквадистиллятор.

 

Условные обозначения: 1-конденсатор – холодильник; 2-паровое пространство камеры предварительного нагрева; 3 – компрессор;4-регулятор давления деминерализованной воды; 5 - камера предварительного нагрева воды деминерализованной; 6-трубки испарителя; 7-регулятор уровня деминерализованной воды; 8-сборник дистиллята.

Трехступенчатый горизонтальный аквадистиллятор (рис. 3) состоит из трех корпусов, может быть и более , работает на деминерализованной воде. Корпус (1) представляет собой испаритель с трубчатым паровым нагревателем (5), технический греющий пар подается в верхнюю его часть, а отработанный выводится в нижней части. Внутрь испарителя заливается нагретая в конденсаторе-холодильнике (2) вода деминерализованная до постоянного уровня и нагревается до кипения.

Пар верхней части каждого корпуса проходит через ситчатую тарелку с постоянным слоем проточной апирогенной воды ( 4) . Барботаж способствует эффективному задержанию капель из пара. Очищенный пар поступает в нагреватель второго корпуса и нагревает воду до кипения. Вторичный пар второго корпуса барботирует через слой воды в ситчатой тарелке и поступает в нагреватель третьего. Очищенный вторичный пар третьего корпуса поступает в конденсатор-холодильник 2 – общий для всех корпусов. Капельная фаза удаляется из пара.

Преимущества аквадистиллятора объясняются тем, что вода получается достаточно хорошего качества:

1) в корпусах-испарителях большая высота парового пространства;

2) удаление капельной фазы производится за счет того, что вторичный пар проходит через ситчатую тарелку с постоянным слоем проточной апирогенной воды, т.е. барботаж способствует эффективному задержанию капель из пара.

 

Рис. 3. Трехступенчатый горизонтальный аквадистиллятор.

 

Условные обозначения: 1 корпус - испаритель; 2- конденсатор-

холодильник; 3- сборник дистиллята; 4-ситчатая тарелка с апирогенной водой; 5-испаритель с трубчатым паровым нагревателем; 6- воздушный фильтр.

 



2019-12-29 413 Обсуждений (0)
Схемы получения воды для инъекций 0.00 из 5.00 0 оценок









Обсуждение в статье: Схемы получения воды для инъекций

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (413)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)