Мегаобучалка Главная | О нас | Обратная связь


ПРОБЛЕМЫ г. МОСКВЫ. ПОДЗЕМНЫЕ ВОДЫ И ЗДОРОВЬЕ НАСЕЛЕНИЯ.



2019-12-29 203 Обсуждений (0)
ПРОБЛЕМЫ г. МОСКВЫ. ПОДЗЕМНЫЕ ВОДЫ И ЗДОРОВЬЕ НАСЕЛЕНИЯ. 0.00 из 5.00 0 оценок




Министерство образования и науки Российской Федерации

СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ

 

Кафедра безопасности жизнедеятельности

 

 

                            

 

КУРСОВАЯ РАБОТА

по дисциплине: «Системы защиты среды обитания»

 

на тему: Очистка грунтовых вод, загрязненных промышленным предприятием

 

 

                                                                       Выполнил:

Ст. гр. БЖ– 41 Акулинин К. А.                                                                           

 

                                                                      Проверил:

Ст. преп. Гражденников А.Е. 

 

 

Новосибирск

2010

Оглавление

 

ВВЕДЕНИЕ……………………………………………………………………………………………..3

ТЭЦ………………………………………………………………………………………………………4

ПРОБЛЕМЫ г. МОСКВЫ. ПОДЗЕМНЫЕ ВОДЫ И ЗДОРОВЬЕ НАСЕЛЕНИЯ………………... 8   

КАЧЕСТВО ПИТЬЕВОЙ ВОДЫ ……………………………………………………………………12  

АНАЛИЗ ГИДРОГЕОЛОГИЧЕСКОГО РАЗРЕЗА ДОЛИНЫ РЕКИ КОЗЛОВКА  . 18

АНАЛИЗ КАРТЫ ГИДРОИЗОГИПС ……………………………………………………………….19

БАЛАНС ПОДЗЕМНЫХ ВОД……………………………………………………………………….20 

ХИМИЧЕСКИЙ СОСТАВ ПОДЗЕМНЫХ ВОД……………………………………………………21   

УСТАНОВКА ОЧИСТКИ СТОЧНЫХ ВОД В РАЙОНЕ ТЭЦ…………………………………….23

ЗАКЛЮЧЕНИЕ……………………………….………………………………………………23

 

Ведение.

В большинстве случаев загрязнение пресных вод остаётся невидимым, поскольку загрязнители растворены в воде. Но есть и исключения: пенящиеся моющие средства, а также плавающие на поверхности нефтепродукты и неочищенные стоки. Есть несколько природных загрязнителей. Находящиеся в земле соединения алюминия попадают в систему пресных водоёмов в результате химических реакций. Паводки вымывают из почвы лугов соединения магния, которые наносят огромный ущерб рыбным запасам. Однако объём естественных загрязняющих веществ ничтожен по сравнению с производимыми человеком. Ежегодно в водные бассейны попадают тысячи химических веществ с непредсказуемым действием, многие из которых представляют собой новые химические соединения. В воде могут быть обнаружены повышенные концентрации токсичных тяжелых металлов (как кадмия, ртути, свинца, хрома), пестициды, нитраты и фосфаты, нефтепродукты, поверхностно-активные вещества (ПАВы). Как известно, ежегодно в моря и океаны попадает до 12 млн тонн нефти. Определенный вклад в повышение концентрации тяжелых металлов в воде вносят и кислотные дожди. Они способны растворять в грунте минералы, что приводит к увеличению содержания в воде ионов тяжелых металлов. С атомных электростанций в круговорот воды в природе попадают радиоактивные отходы. Сброс неочищенных сточных вод в водные источники приводит к микробиологическим загрязнениям воды. По оценкам Всемирной организации здравоохранения (ВОЗ) 80 % заболеваний в мире вызваны неподобающим качеством и антисанитарным состоянием воды. В сельской местности проблема качества воды стоит особенно остро — около 90 % всех сельских жителей в мире постоянно пользуются для питья и купания загрязненной водой.

Загрязнению подвергаются не только поверхностные, но и подземные воды.
В целом состояние подземных вод оценивается как критическое и имеет опасную тенденцию дальнейшего ухудшения.

Подземные воды (особенно верхних, неглубоко залегающих, водоносных горизонтов) вслед за другими элементами окружающей среды испытывают загрязняющее влияние хозяйственной деятельности человека. Подземные воды страдают от загрязнений нефтяных промыслов, предприятий горнодобывающей промышленности, полей фильтрации, шламонакопителей и отвалов металлургических заводов, хранилищ химических отходов и удобрений, свалок, животноводческих комплексов, не канализированных населенных пунктов.
Происходит ухудшение качества воды в результате подтягивания некондиционных природных вод при нарушении режима эксплуатации водозаборов. Площади очагов загрязнения подземных вод достигают сотен квадратных километров.

Из загрязняющих подземные воды веществ преобладают: нефтепродукты, фенолы, тяжелые металлы (медь, цинк, свинец, кадмий, никель, ртуть), сульфаты, хлориды, соединения азота.

 

ТЭЦ

Теплоэлектроцентра́ль (ТЭЦ) — разновидность тепловой электростанции, которая производит не только электроэнергию, но и является источником тепловой энергии в централизованных системах теплоснабжения (в виде пара и горячей воды, в том числе и для обеспечения горячего водоснабжения и отопления жилых и промышленных объектов).

Принцип работы.

ТЭЦ конструктивно устроена как ТЭС. Главное отличие ТЭЦ от КЭС состоит в возможности отобрать часть тепловой энергии пара, после того, как он выработает электрическую энергию. В зависимости от вида паровой турбины, существуют различные отборы пара, которые позволяют забирать из нее пар с разными параметрами. Турбины ТЭЦ позволяют регулировать количество отбираемого пара. Отобранный пар конденсируется в сетевых подогревателях и передает свою энергию сетевой воде, которая направляется на пиковые водогрейные котельные и тепловые пункты. На ТЭЦ есть возможность перекрывать тепловые отборы пара, в этом случае ТЭЦ становится обычной КЭС. Это дает возможность работать ТЭЦ по двум графикам нагрузки:

· теплофикационному — электрическая нагрузка зависит от тепловой нагрузки

· электрофикационному — тепловая нагрузка зависит от электрической, либо вовсе отсутствует.

Совмещение функций генерации тепла и электроэнергии (когенерация) выгодно, так как оставшееся тепло, которое не участвует в работе на КЭС, используется в отоплении. Это повышает расчетный КПД в целом (80 % у ТЭЦ и 30 % у КЭС), но не говорит об экономичности ТЭЦ. Основными же показателями экономичности являются: удельная выработка электроэнергии на тепловом потреблении и КПД цикла КЭС.

При строительстве ТЭЦ необходимо учитывать близость потребителей тепла в виде горячей воды и пара, так как передача тепла на большие расстояния экономически нецелесообразна.

Примесные выбросы теплоэнергетических объектов и их распространение.

В первую очередь при анализе взаимодействия теплоэнергетики и окружающей среды должны быть рассмотрены элементарные процессы происходящие при сжигании топлива (в особенности органического), так как при его сжигании образуется большое количество вредных соединений (оксиды азота, серы, сажа, соединения свинца, водяной пар).

Различные компоненты продуктов сгорания топлива, выбрасываемые в атмосферу, гидросферу, литосферу и во время пребывания ведущие себя по-разному (изменяется t, свойства)называются примесными выбросами.

При выходе в атмосферу, выбросы содержат продукты реакций в твёрдой, жидкой и газообразной фазах. Изменение состава выбросов

После их выпадения могут проявляться в виде: осаждения тяжёлых фракций, распада на компоненты по массе и размерам, химических реакций с компонентами воздуха, взаимодействием с воздушными течениями, с облаками, с атмосферными осадками, фотохимические реакции. В результате, состав выбросов может существенно измениться, могут появиться новые компоненты, поведение и свойства которых (в частности, токсичность, активность, способность к новым реакциям) могут значительно отличаться от данных.

Газообразные выбросы образуют соединения углерода, серы и азота.

Оксиды азота практически не взаимодействуют с другими веществами в атмосфере и время их существования почти не ограничено. Сернистый ангидрид (SO2)один из токсичных газообразных выбросов теплоэнергоустановок, с небольшой продолжительностью пребывания в атмосфере, в присутствии кислорода воздуха (О2) доокисляется до SO3 и, вступая в реакцию с водой(Н2О)образует слабый раствор серной кислоты (Н2SO4). В процессе горения в атмосфере кислорода воздуха азот, в свою очередь образует ряд соединений:N2O, NO, N2O3, NO2, N2O4 и N2O5.

В присутствии влаги NO2 легко вступает во взаимодействие с кислородом воздуха, образуя азотную кислоту (НNO3).

Неуклонный рост поступлений токсичных веществ в окружающую среду, прежде всего отражается на здоровье населения Земли, ухудшает качество продукции сельского хозяйства, снижает урожайность, оказывает влияние на климатические условия отдельных регионов мира, состояние озонового слоя Земли, приводит к гибели флоры и фауны.

Можно выделить несколько основных групп наиболее важных взаимодействий теплоэнергоустановок с конденсированными компонента ми окружающей среды.

а). Водопотребление и водоиспользование, обуславливающее изменение естественного материального баланса водной среды(перенос солей, питательных веществ).

б). Осаждение на поверхности твёрдых выбросов продуктов сгорания органических топлив из атмосферы, вызывающее изменение свойств воды, её цветности, альбедо.

в). Выпадение на поверхности в виде твёрдых частиц и жидких растворов продуктов выброса в атмосферу, в том числе: кислот и кислотных остатков, металлов и их соединений, канцерогенных веществ.

г). Выбросы непосредственно на поверхность суши и воды продуктов сжигания твёрдых топлив(зола, шлаки), а также продуктов продувок, очистки поверхностей нагрева (сажа, зола).

д). Выбросы на поверхность воды и суши твёрдых топлив при транспортировке, переработке, перегрузке.

е). Выбросы твёрдых и жидких радиоактивных отходов, характеризуемых условиями их распространения в гидросфере и литосфере.

ж). Выбросы теплоты, следствиями которых могут быть: постоянное локальное повышение температуры в водоёме, временное повышение температуры, изменение условий ледосостава, зимнего гидрологического режима, изменение условий паводков, изменение распределения осадков, испарений, туманов.

з). Создание водохранилищ в долинах рек или с использованием естественного рельефа поверхности, а также создание искусственных прудов-охладителей, что вызывает: изменение качественного и качественного и количественного состава речных стоков, изменение гидрологии водного бассейна, увеличения давления на дно, проникновение влаги в разломы коры и изменение сейсмичности, изменение условий рыболовства, развития планктона и водной растительности, изменение микроклимата, изменение условий отдыха, спортивных занятий, бальнеологических и других факторов водной среды.

и). Изменение ландшафта при сооружении разнородных теплоэнергетических объектов, потребление ресурсов литосферы, в том числе: вырубка лесов, изъятие из сельскохозяйственного оборота пахотных земель, лугов, взаимодействие берегов с водохранилищами.

к). Воздействие выбросов, выносов и изменение характера взаимодействия водных бассейнов с сушей на структуру и свойства континентальных шлейфов.

Примесные загрязнения могут суммарно воздействовать на естественный круговорот и материальные балансы тех или иных веществ между атмосферой, гидросферой и литосферой.

Из анализа общих схем взаимодействия теплоэнергетических установок с окружающей средой, следует, что основным фактором взаимодействия ТЭЦ и ТЭС с водной средой является потребление воды системами технического водоснабжения, в том числе безвозвратное потребление воды. Основная часть расхода воды в этих системах на охлаждение конденсаторов паровых турбин. Остальные потребители технической воды (системы золо- и шлакоудаления, химводоочистки, охлаждения и промывки оборудования) потребляют 7% общего расхода воды, являясь при этом , основным источником примесного загрязнения.

АЭС воздействуя на водный бассейн, в то же время влияют на некоторые растения и вещества (растворённые в воде и содержащиеся в данных отложениях), некоторые из них накапливают радиоактивные изотопы в концентрациях, на несколько порядков превышающих равновесные в окружающей воде. При существующих условиях воздействия ядерной теплоэнергетики на гидросферу (и методах контроля выбросов) освоенные типы ядерных теплоэнергетических установок не представляют собой угрозы нарушения локальных и глобальных равновесных процессов в гидросфере и её взаимодействие с другими оболочками Земли (за исключением аварийных ситуаций, вызывающих загрязнение окружающей среды радиоактивными веществами). Все другие виды воздействия АЭС на гидросферу и литосферу, не связанные с радиоактивностью (влияние систем водоснабжения, фильтров), качественно не отличаются от аналогичных воздействий ТЭС и ТЭЦ.

Учёными доказано, что основными видами примесных выбросов энергетических объектов, поступающими на поверхность гидросферы и литосферы , являются твёрдые частицы, выносимые в атмосферу дымовыми газами и оседающие на поверхность (пыль, зола, шлаки), а также горючие компоненты продуктов обогащения, переработки и транспортировки топлив. Весьма вредными загрязнениями поверхности гидросфер и литосфер является жидкое топливо, его компоненты и продукты его потребления и разложения.

Выбросы теплоты являются одним из основных факторов взаимодействия теплоэнергетических объектов с окружающей средой, в частности с атмосферой и гидросферой. Выделение происходит на всех стадиях преобразования химической энергии органического вещества или ядерного топлива для выработки тепловой энергии. Большая часть теплоты, получаемой охлаждающей водой в конденсаторах паровых турбин, передаётся в водоёмы, водотоки, а оттуда в атмосферу (t воды в месте сброса нагретой воды повышается, что ведёт к повышению средней.

Температуры поверхности водоёма, атмосферный воздух над теплоэнергетической установкой повышается, вследствие энергии, выделенной этой установкой в атмосферу). 

     Теплоэлектростанции оказывают значительное негативное воздействие на состояние всех элементов окружающей природной среды. Это, прежде всего, химическое загрязнение, связанное со значительными выбросами в атмосферу таких загрязнителей, как оксиды азота, углерода, диоксид серы, зола. Одним из наиболее токсичных газообразных выбросов энергоустановок является сернистый ангидрид – SO2 . Он составляет примерно 99% выбросов сернистых соединений (остальное количество приходится на SO3). Его удельная масса – 2,93 кг/м3, температура кипения – 195єC. Продолжительность пребывания SO2 в атмосфере сравнительно невелика. Он принимает участие в каталитических, фотохимических и других реакциях, в результате которых
окисляется и выпадает в сульфаты. В присутствии значительных количеств
аммиака NH3 и некоторых других веществ время жизни SO2 исчисляется
несколькими часами. В сравнительно чистом воздухе оно достигает 15 – 20
суток. В присутствии кислорода SO2 окисляется до SO3 и вступает в реакцию с
водой, образуя серную кислоту. Загрязнение гидросферы органическими и взвешенными веществами, поступающими со сточными водами; различные виды физических воздействий, таких как тепловое и акустическое. Кроме того, деятельность теплоэлектростанций связана с образованием большого количества отходов различных классов опасности, значительную часть которых составляют золошлаковые отходы (ЗШМ).
При сжигании угля на тепловых электростанциях (ТЭС) образуется большое количество золошлаковых отходов (ЗШО), оказывающих негативное влияние на все компоненты окружающей природной среды. Из числа самых главных экологических проблем, возникающих при образовании и размещении ЗШО, выделяют следующие:
накопление токсичных элементов в продуктах сжигания угля;
расположение золошлакоотвалов (далее золоотвалов) вблизи больших городов (а нередко в черте города); поступление (выброс) токсичных микроэлементов в атмосферный воздух, загрязнение окружающей среды прилегающего района; загрязнение токсичными элементами, тяжелыми металлами поверхностных и подземных источников, земли, почвы при складировании и хранении золошлаковых материалов на золоотвале (золошлакоотвале); отчуждение больших территорий с целью строительства золоотвалов для размещения ЗШО; использование в большинстве ТЭС технологического оборудования, не отвечающего требованиям экологической безопасности;
низкий процент утилизации ЗШО в качестве товарной продукции.

Следует особо подчеркнуть, что защита подземных и поверхностных вод от загрязнения токсичными химическими элементами и их соединениями является одной из наиболее серьезных и сложных проблем.


К негативным последствиям влияния золошлаковых отходов также относятся:
отчуждение земель;
деформация поверхности, изменение рельефа;
загрязнение токсичными элементами, тяжелыми металлами;
снижение плодородия почв и урожайности сельскохозяйственных культур;
загрязнение дымовыми газами;
пыление золоотвалов при транспортировке, складировании и ветровой эрозии;
сокращение численности видов лесов, растительности, животных, биоты, ихтиофауны; изменение биоразнообразия;
снижение дебита водотока, изменение гидрологического режима;
также представляет опасность и так называемое тепловое загрязнение
водоёмов, вызывающее многообразные нарушения их состояния.

 

ТЭС производят энергию при помощи турбин, приводимых в движение нагретым паром, а
отработанный пар охлаждается водой. Поэтому от электростанций в водоёмы
непрерывно поступает поток воды с температурой на 8-12єC превышающей
температуру воды в водоёме. Крупные ТЭС сбрасывают до 90 мі/с нагретой
воды. По подсчётам немецких и швейцарских учёных, возможности рек Швейцарии
и верхнего течения Рейна по нагреву сбросной теплотой электростанций уже
исчерпаны. Нагрев воды в любом месте реки не должен превышать больше чем на
3єC максимальную температуру воды реки, которая принята равной 28єC. Из
этих условий мощность электростанций ФРГ, сооружаемых на Рейне, Инне,
Везере и Эльбе, ограничивается значением 35000 МВт. Тепловое загрязнение
может привести к печальным последствиям. По прогнозам Н.М. Сваткова
изменение характеристик окружающей среды (повышение температуры воздуха и
изменение уровня мирового океана) в ближайшие 100-200 лет может вызвать
качественную перестройку окружающей среды (стаивание ледников, подъём
уровня мирового океана на 65 метров и затопление обширных участков суши).

Для уменьшения концентрации вредных соединений в приземном слое
воздуха котельные ТЭС оборудуют высокими, до 100-200 и более метров,
дымовыми трубами. Но это приводит также к увеличению площади их
рассеивания. В результате крупными промышленными центрами образуются
загрязнённые области протяженностью в десятки, а при устойчивом ветре – в
сотни километров.

Наиболее «чистое» топливо для тепловых электростанций – газ, как
природный, так и получаемый при переработке нефти или в процессе метанового
брожения органических веществ. Наиболее «грязное» топливо – горючие сланцы,
торф, бурый уголь. При их сжигании образуется больше всего пылевых частиц и
оксидов серы.

 

 

ПРОБЛЕМЫ г. МОСКВЫ. ПОДЗЕМНЫЕ ВОДЫ И ЗДОРОВЬЕ НАСЕЛЕНИЯ.

Эколого-гидрогеологические проблемы использования подземных вод для водоснабжения г. Москвы

В качестве примера предполагаемого крупного отбора под­земных вод и связанных с этим природоохранных ограничений рассмотрим проблемы водоснабжения г. Москвы.

Питьевое водоснабжение большинства небольших городов с населением менее 100 тыс. человек в каждом почти полностью основано на подземных водах. Третья часть крупных городов с населением свыше 250 тыс. человек, использует для питьевого водоснабжения исключительно подземные воды, и еще треть -подземные и поверхностные воды совместно. Однако водоснаб­жение крупнейших городов России и прежде всего таких мно­гомиллионных городов как Москва и Санкт-Петербург основа­но почти полностью на поверхностных водах.

До настоящего времени Москва остается одним из немно­гих крупных городов России, практически не использующих для питьевого водоснабжения подземные воды. Выход из строя во­дозаборов в связи с возможными аварийными ситуациями при­водит к загрязнению поверхностных вод. Поэтому использова­ние защищенных от загрязнения пресных подземных вод напор­ных водоносных горизонтов должно повысить надежность системы хозяйственно-питьевого водоснабжения города.

Состав и свойства подземных вод изучены в пределах Мос­ковского региона до глубин, составляющих примерно 1500 м. Пресные подземные воды с минерализацией до 1 г/л распрост­ранены до глубин в среднем 250-300 м, в отдельных районах до глубин всего 80-100 м. В настоящее время сеть скважин включает около 1100 наблюда­тельных скважин.

Геолого-гидрогеологический разрез территории Москов­ской области представлен двумя гидрогеологическими эта­жами: нижним, сложенным преимущественно известняками ка­менноугольного возраста, и вышележащими рыхлыми песчано-глинистыми отложениями мелового и четвертичного возраста. Эти водоносные толщи разделены регионально выдержанным водоупором юрских глин мощностью от 8-10 до 30-40 м, кото­рые в долинах рек часто размыты.

       Примерно 80% водоотбора подземных вод осуществляется городскими водозаборами, в зонах расположения которых в последние го­ды ухудшилась экологическая обстановка. Эти водозаборы, особенно расположенные в г. Москве и ближайших его окрест­ностях, работают в условиях постоянного риска загрязнения.

       Для решения проблемы более широкого использования пре­сных подземных вод хорошего качества в течение нескольких лет были разведаны 4 крупных месторождения подземных вод, находящихся в радиусе примерно 100—120 км от города. Общий отбор подземных вод в объединенной системе водоснабжения из новых четырех крупных водозаборов предусмотрен в количе­стве 2,7 млн. м3/сут. При этом общий отбор подземных вод на территории Московского региона не должен превышать вели­чины их естественных ресурсов (питания), которые оценены в 8,7 млн. м7сут.

При распределении эксплуатационных запасов подземных вод между Москвой и Московской областью приоритет отдан городам Московской области. Потребность области в воде со­ставляет 5 млн. м3/сут. Ее планируется удовлетворить как за счет подземных вод месторождений, не включенных в объединен­ную систему (3,8 млн. м3/сут), так и месторождений, входящих в эту систему (1,1 млн. м3/сут). Предусматривается, что только после удовлетворения перспективной потребности в подземной воде питьевого качества городов Московской области возмож­но их использование для водоснабжения самого г. Москвы.

       Известно, что требованиями Государственного стандарта России "Безопасность в чрезвычайных ситуациях. Защита си­стемы хозяйственно-питьевого водоснабжения", установлено, что водоснабжение средних и крупных городов должно быть основано на не менее, чем двух независимых источниках во­доснабжения.

Одним из таких источников должны быть подземные воды, минимальная доля которых в водоснабжении города должна быть достаточной, чтобы иметь возможность обеспечивать беспере­бойную подачу питьевой воды населению при отключении по­верхностных водоисточников в период их аварийного загрязне­ния. "Генеральной схемой..." предусматривалось комплексное решение двух важных проблем: водообеспечение подземной водой питьевого качества ряда городов и населенных пунктов Мос­ковской области и создание автономного источника резервного водоснабжения столицы на случай непредвиденных природно-техногенных катастроф, исключающих возможность использо­вания подземных вод.

       В "Схеме..." обосновывается возможность использования подземных вод для хозяйственно-питьевого водоснабжения на­селения Московского региона. "Схемой..." предусматривается создание объединенной системы водоснабжения, состоящей из четырех систем водозаборов подземных вод (Северной, Юж­ной, Восточной и Западной) с общим отбором подземных вод 2,7 млн. м3/сут (соответственно 860,1200,500 и 140 тыс. м3/сут). При разработке "Схемы..." авторы исходили из следующих ос­новных принципиальных соображений:

- интенсификация использования подземных вод в Москов­ском регионе является единственным, практически не имеющим альтернатив способом повышения надежности водоснабжения столицы России и близлежащих районов;

- общий отбор подземных вод на территории Московского региона не должен превышать величину их естественных ресур­сов, иными словами, не должен быть больше величины их ежегод­ного естественного восполнения (за многолетний период):

- в первую очередь должна быть удовлетворена потребность в воде питьевого качества городов Московской области (около 5 млн. м3/сут). Ее планируется удовлетворить как за счет уже существующих разведанных и эксплуатируемых месторождений подземных вод области, не включенных в объединенную систе­му (3,8 Млн. м3/сут), так и новых месторождений на указанных 4-х участках, включенных в эту систему (1,1 млн. м3/сут);

- на водоснабжение самого города Москвы будет использо­ваться только часть запасов подземных вод, которая остается после удовлетворения потребностей в воде Московской обла­сти (1,6 млн. м3/сут).

В процессе оценки перспективных возможностей интенси­фикации использования подземных вод с помощью математи­ческих моделей изучалось взаимодействие между существую­щими и проектными водозаборами.

Предлагаемые к использованию 2,7 млн. м3/сут подземных вод рекомендовалось распределить между отдельными систем­ами следующим образом: Северная система - 0,8, Южная си­стема - 1,2, Восточная система - 0,56 и Западная система -0,14 млн. м3/сут.

Как указывалось выше, первоначально предполагалось, что производительность водозаборов, входящих в объединенную систему водоснабжения, составит около 2,7 млн. м3/сут, из ко­торых 1,6 млн. м3/сут планировалось подавать в Москву. Одна­ко, в последнее время установлено, что дополнительная вода городу не нужна, что вызвано прежде всего осуществляемыми и планируемыми мероприятиями по экономии воды и уменьше­нию общей потребности в воде в силу ряда причин экономичес­кого характера.

       Поэтому подача подземных вод в Москву в пе­риоды интенсивного загрязнения поверхностных вод может быть ограничена 1,0 млн. м3/сут (исходя из нормы 100-200 л/сут на 1 человека при численности населения г. Москвы в 8,5 млн. че­ловек).

В настоящее время в качестве первоочередного освоения выбрана южная группа месторождений, основанная на исполь­зовании подземных вод каменноугольных водоносных горизон­тов в долине р. Оки (район г. Серпухова).

Качество подземных вод на участках, включенных в объеди­ненную систему, в целом соответствует нормам для питьевых вод, установленным в России, за исключением повышенного содержания железа и марганца. Кроме того, на Южной системе отмечается пониженное содержание фтора. Месторождения Северной и Восточной систем надежно защищены от возмож­ного загрязнения, а месторождения Южной и Западной систем являются слабо защищенными. Выполненные специальные гид­родинамические расчеты показывают, что качество подземных вод при эксплуатации изменится незначительно и это не приве­дет к невозможности их использования для питьевого водоснаб­жения.

При разработке "Генеральной схемы объединенной системы водоснабжения г. Москвы й Московской области с использова­нием подземных источников" значительное внимание уделялось прогнозу возможных экологических последствий интенсифика­ции использования подземных вод. В частности, анализирова­лось влияние снижения уровня в верхнем водоносном горизон­те на состояние растительности, ландшафтов, прогнозировалось возможное изменение речного стока (особенно стока малых рек), опасность загрязнения эксплуатируемых водоносных горизон­тов за счет миграции загрязнителей при изменении гидродина­мических условий взаимодействия подземных и поверхностных вод и отдельных водоносных горизонтов между собой. При этом авторы "Схемы..." правильно подчеркивают, что при прогнозе возможного влияния отбора подземных вод на окружающую сре­ду первостепенное значение имеет анализ опыта эксплуатации действующих водозаборов подземных вод. Как уже отмечалось, многолетняя эксплуатация подземных вод, вызывающая сниже­ние уровней подземных вод в каменноугольных водоносных горизонтах на многие десятки метров, не привела к заметным и опасным негативным экологическим последствиям, за ис­ключением уменьшения меженного стока рек на отдельных уча­стках.

Влияние эксплуатации подземных вод на сток малых рек про­является двояко: иногда на некоторых реках возникают участки, где поверхностный сток уменьшается (Москва в верховьях, Ис­тра в среднем течении, Пахра, Нерская, Нора и некоторые дру­гие) за счет питания рекой грунтовых водоносных горизонтов й сокращения подземного стока в реки. В других случаях за счет сброса в реки очищенных отработанных вод, различных стоков, речной сток по сравнению с естественным увеличивается (реки Воря, Торгоша, Пажа). Характерной в этом отношении являет­ся р. Клязьма, сток которой выше Ногинска уменьшился по срав­нению с естественным, а ниже Ногинска и Электростали - уве­личился.

Математическое моделирование, проведенное с учетом се­зонного регулирования питания грунтовых водоносных го­ризонтов, показало, что "ущерб" меженному стоку малых рек составит около 10% в год средней водности и 17-18% в год вод­ности 95% обеспеченности. На отдельных участках рек, где ме­женный сток рек 95% обеспеченности уменьшится более, чем на 25-30%, потребуется осуществление специальных меропри­ятий, таких как устройство русловых запруд, подпитывание ма­лых рек в экстремальных ситуациях подземными водами и др.

Следует отметить, что проблема интенсификации использо­вания подземных вод в Московском регионе вызвала небыва­лый интерес и прежде всего значительное беспокойство у насе­ления и ряда ученых, в частности Пущинского научного центра. Еще ни разу в бывшем Советском Союзе специалисты и просто жители какого-либо региона не обсуждали столь активно эколо­гические проблемы использования подземных вод. Можно на­звать две основные причины этого:

- впервые в России планируется столь крупный отбор под­земных вод для решения проблемы питьевого водоснабжения такого большого города, как Москва;

- в последние годы наблюдается повышенный интерес насе­ления к экологическим проблемам природопользования, в том числе к опасности крупномасштабного использования подзем­ных вод.

Предварительный вывод авторов проекта, основанный на анализе существующего опыта эксплуатации, о незначительном влиянии водоотбора на уровень подземных вод первого от по­ верхности водоносного горизонта и, тем самым, на раститель­ный мир, в целом является достаточно обоснованным. Однако этот оптимистический вывод, имеющий важное практическое значение для экологии региона, должен быть подкреплен и бо­лее обоснован дальнейшими опытными и экспериментальными исследованиями. В связи с этим одним из важнейших направле­ний дальнейших работ по повышению эффективности исполь­зования подземных вод для водообеспечения Московского ре­гиона является создание комплексного мониторинга окружаю­щей среды, включающего подземные воды. Необходимо также провести специальные опытно-фильтрационные эксперимен­тальные работы на опытных полигонах, позволяющие в натур­ных условиях смоделировать возможное влияние отбора под­земных вод на экосистемы бассейнов малых рек. Проведение исследований в рамках такого мониторинга позволит опреде­лить необходимость, состав и содержание компенсационных мероприятий по минимизации возможного негативного влия­ния крупного отбора подземных вод на сток малых рек, состоя­ние растительности, возникновение или усиление карстово-суффозионных процессов, качество отбираемой подземной воды. Кроме того, результаты таких работ позволят разработать науч­но-обоснованные методические рекомендации по региональной оценке экологических последствий влияния отбора подземных вод на окружающую среду, которые можно будет использовать при решении аналогичных проблем в других регионах.

 



2019-12-29 203 Обсуждений (0)
ПРОБЛЕМЫ г. МОСКВЫ. ПОДЗЕМНЫЕ ВОДЫ И ЗДОРОВЬЕ НАСЕЛЕНИЯ. 0.00 из 5.00 0 оценок









Обсуждение в статье: ПРОБЛЕМЫ г. МОСКВЫ. ПОДЗЕМНЫЕ ВОДЫ И ЗДОРОВЬЕ НАСЕЛЕНИЯ.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (203)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)