Мегаобучалка Главная | О нас | Обратная связь  


КАЧЕСТВО ПИТЬЕВОЙ ВОДЫ




Для оценки качества воды применяют физические, химические, бактериологи­ческие и технологические методы анали­за. При учете динамики состава воды в источниках водоснабжения важно, чтобы данные анализа совпадали с биологиче­скими показателями и отражали качество именно той воды, которая будет посту­пать в водозабор и направляться на обра­ботку. Поэтому выбор источника водо­снабжения и отбор проб из него следует проводить в строгом соответствии с ГОСТом.

Характеристика физических показателей качества воды

При оценке качества воды источника необходимо знать ее физические показа­тели (температуру, запах, вкус, мут­ность и цветность).

Температура воды.

Температура природных вод зависит от их происхож­дения. Воды подземных источников отли­чаются постоянством температуры, при­чем с увеличением глубины залегания вод сезонные колебания температуры уменьшаются. Наоборот, температура вод открытых водоемов (рек, прудов, водохранилищ) претерпевает значитель­ные изменения, связанные с нагреванием и остыванием водоемов. Помимо сезонных изменений на температуру воды в отдельных местах открытых водоемов влияет поступление в них подземных вод, а также тепловых выбросов промышленности. Оптимальная температура воды, используемой для питья, составляет 7—11 °С.



Прозрачность или мут­ность воды.

Природные воды, осо­бенно поверхностные, почти никогда не бывают прозрачными из-за наличия в них взвешенных частиц глины, песка, ила, водорослей и других веществ минераль­ного или органического происхождения.

Причиной мутности речных и озерных вод могут быть составные части почв и горных пород, вымываемые реками из своего русла, а также талые воды и лив­невый смыв, т. е. твердые осадки, смы­ваемые дождями с почвы лесов, полей, лугов и улиц населенных пунктов. Лив­невый смыв в период сильных дождей повышает мутность воды в несколько раз. В больших водоемах помутнение воды происходит за счет взмучивания осадков со дна вследствие волнения в ветреную погоду, в результате массового развития одноклеточных водорослей и по другим причинам.

Мутность воды в реках в различные времена года значительно изменяется, причем обычно она резко возрастает вес­ной в период половодья. Наименьшая мутность наблюдается в зимнее время, когда реки покрыты льдом.

Количественное определение взвешен­ных веществ в воде весовым способом за­нимает много времени, и в практике чаще применяются методы косвенной оценки: установление прозрачности или мутно­сти воды. При содержании взве­шенных веществ менее 3 иг/л определяют не прозрачность, а мутность воды (поня­тие, обратное прозрачности), сравнивая испытуемую воду со стандартными суспензиями. Согласно ГОСТ 3351—74 мутность воды определяется фотометри­ческим способом и выражается в милли­граммах на 1 л.

 

Цветность воды.

   Чистая во­да, взятая в малом объеме, бесцветна. В толстом слое она имеет голубовато-зеленый оттенок. Другие оттенки свиде­тельствуют о наличии в ней различ­ных растворенных и взвешенных при­месей. Для выяснения природы цвет­ной воды необходимо в каждом кон­кретном случае установить причину ,вызвавшую появление того или иного цвета.

    Изменение цветности воды в основном обусловливают органические соедине­ния, которые в природных водах весьма разнообразны. Некоторые из них вхо­дят в состав организмов, населяющих воду, а часть является продуктами их жизнедеятельности или распада. В при­родной воде установлено присутствие гумусовых и дубильных веществ, белково- и углеводоподобных соединений, жи­ров, органических кислот и витаминов. Иногда источником окрашенных органических соединений в водоемах слу­жат промышленные и бытовые сточные воды. Коллоидные железистые соедине­ния придают воде оттенки от желтоватых до зеленых.

Цветность воды выражается в градусах и определяется фотометрически — путем сравнения проб испытуемой жидкости с растворами, имитирующими цвет при­родной воды.

Вкус и запах воды.

Разли­чают четыре вкуса природной воды: соле­ный, горький, сладкий и кислый. При. родные воды, используемые для водоснабжения, могут обладать соленым или горьким вкусом, что связано с присутствием избытка растворенных солей.

   В частности, избыток MgS04 вызывает горький вкус, избыток NaCl — соленый. Кислый вкус имеют минеральные воды при избытке растворенной углекислоты.
       Все другие виды вкусовых ощущений называются привкусами. Так, соли же-леза (II) и марганца придают воде чер­нильный или железистый привкус, CaS04 — вяжущий.
Интенсивность вкуса и привкуса определяется органолептически при 20 °С и оценивается по пятибалльной сис­теме.

Запахи воды бывают естественного и искусственного происхождения. Причи­ной запахов естественного происхожде­ния могут быть химический состав при­месей воды, живущие и отмершие в воде организмы, загнивающие растительные остатки, специфические соединения, вы­деляемые некоторыми водорослями и микроорганизмами. К этим за­пахам относятся следующие: аромати­ческий, болотный, гнилостный, древес­ный, землистый, запах плесени, рыбный, травянистый, неопределенный, а также запах сероводорода, часто обусловливае­мый присутствием последнего в воде.

Наличие в воде запахов естественного происхождения периодически наблю­дается в реках и каналах. В водохрани­лищах запахи часто появляются в период массового развития водорослей, во вре­мя так называемого цветения воды.

Вещества, обусловливающие запахи естественного происхождения, являются сложными смесями ароматических угле­водородов и кислородсодержащих соеди­нений (спирты, альдегиды, кетоны, сложные эфиры). Они летучи, раз­рушаются сильными окислителями и хо­рошо поглощаются активированным уг­лем. Запахи искусственного проис­хождения, вызываемые примесями про­мышленных сточных вод, называются по соответствующим веществам: феноль-ный, хлорфенольный, нефтяной и т. д.

Характеристика химических показателей качества воды

Химический анализ природной воды имеет решающее значение в практике во­доснабжения. Результаты анализа позво­ляют установить пригодность источника для питьевого и технического водоснаб­жения, наличие в воде вредных для ор­ганизма загрязнений или соединений, способствующих ее коррозийной актив­ности, вспениванию, образованию наки­пи и т. д.

   На основании сопоставления результа­тов анализа природной воды с требова­ниями, предъявляемыми к ней потреби­телем, можно судить о том, каким про­цессам очистки следует подвергнуть эту воду для улучшения тех или иных пока­зателей ее качества.

   К химическим определениям относятся установление активной реакции воды, окисляемости, азотсодержащих веществ, растворенных в воде газов, плотного ос­татка и потерь при прокаливании, жест­кости и щелочности, а также хлоридов, сульфатов, железа, марганца и других элементов.

   Активная реакция воды, т. е. степень ее кислотности или щелочности, опреде­ляется концентрацией водородных ионов, точнее, их активностью.

   Активность представляет собой эффектив­ную концентрацию вещества, учитывающую взаимодействие его ионов или молекул друг с другом, а также с молекулами растворителя.

   Окисляемость воды. Наличие в при­родных водах органических и некоторых легкоокисляющихся неорганических примесей (сероводорода, сульфитов, же­леза (II) и др.) обусловливает опреде­ленную величину окисляемости воды. В связи с тем что окисляемость поверх­ностных вод объясняется главным обра­зом наличием органических веществ, установление окисляемости, т. е. коли­чества кислорода, необходимого для окисления примесей в данном объеме зоды, является одним из косвенных ме­тодов определения органических веществ в воде.

Окисляемость природных, особенно по­верхностных, вод не является постоян­ной величиной. Изменение химической характеристик, поступающих в воду веществ меняет величину ее окисляемо­сти. Повышенная окисляемость воды сви­детельствует о загрязнении источника и требует применения соответствующих ме­роприятий по его охране при использова­нии для водоснабжения. Внезапное повы­шение окисляемости воды служит при­знаком загрязнения ее бытовыми сточны­ми водами, поэтому величина окисляе­мости — важная гигиеническая характе­ристика воды.

Окисляемость определяют обработкой исследуемой воды марганцевокислым ка­лием (пермангнатная окисляемость).

Определение окисля­емости является не только способом уста­новления концентрации органических ве­ществ, но в сочетании с другими показа­телями, например с цветностью, может служить и методом определения их про­исхождения.

Азотсодержащие вещества (ионы ам­мония, нитритные и нитратные ионы) образуются в воде в результате разложе­ния белковых соединений, попадающих в нее почти всегда со сточными бытовыми водами, сточными водами коксобензоль-ных, азотнотуковых и других заводов. Белковые вещества под действием мик­роорганизмов подвергаются распаду, ко­нечный продукт которого — аммиак. Наличие последнего свидетельствует о загрязнении воды сточными водами.

Сухой остаток и потеря при прокали­вании. О количестве солей, содержащих­ся в природных водах, можно судить по величине сухого остатка и потере массы при прокаливании. Сухой остаток, обра­зующийся при выпаривании определен­ного объема воды, предварительно про­фильтрованной через бумажный фильтр, состоит из минеральных солей и нелету­чих органических соединений. Органи­ческая часть сухого остатка воды опреде­ляется потерей его при прокаливании.

Наличие в воде большого количества сульфатов нежелательно, так как суль­фат натрия, например, нарушает деятель­ность желудочно-кишечного тракта, а сульфаты кальция и магния повышают некарбонатную жесткость воды.

Сульфаты и хлориды в определенных концентрациях являются причиной кор­розийной активности (агрессивности) во­ды.

Воды, содержащие большое количество сульфатов, оказывают разрушающее действие на бетонные конструкции.

Щелочность воды. Под общей щелоч­ностью воды подразумевается сумма со­держащихся в воде гидроксильных ионов (ОН) и анионов слабых кислот, напри­мер угольной (ионов НСОз, СОз). По­скольку в большинстве природных вод преобладают углекислые соединения, различают обычно лишь гидрокарбонат­ную и карбонатную щелочность. При некоторых приемах обработки воды и при рН ее выше 8,5 возникает гидратная щелочность.

Щелочные металлы. Из ионов щелоч­ных металлов в воде наиболее распрост­ранены Na и К, попадающие в воду в результате растворения коренных по­род. Основным источником натрия в при­родных водах являются залежи пова­ренной соли. В природных водах натрия содержится больше, чем калия. Это объ­ясняется лучшим поглощением послед­него почвами, а также большим извлече­нием его из воды растениями.

Жесткость воды. Жесткость природ­ных вод обусловливается наличием в них солей кальция и магния. Ионы Са2+ по­ступают в воду при растворении извест­няков под действием содержащейся  в воде углекислоты водой гипса

СаС03 + Н20 + С02 <± Са2+ + 2НСОо

.

Основным источником ионов магния служат доломиты, также растворяющие­ся водой в присутствии углекислоты.

Хотя указанные соли и не являются особо вредными для организма, наличие их в воде в больших количествах нежела­тельно, так как вода становится непри­годной для хозяйственно-питьевых нужд и промышленного водоснабжения. В жесткой воде плохо развариваются овощи, перерасходуется мыло при стирке белья. Жесткая вода непригодна для пи­тания паровых котлов; ее нельзя исполь­зовать во многих отраслях промышлен­ности .

Общая жесткость воды представляет собой суммы карбонатной (временной) и некарбонатной (постоянной) жесткости.

Карбонатная жесткост ь, свя­занная с присутствием в воде в основном гидрекарбонатов кальция или магния, почти полностью удаляется при кипяче­нии воды. Гидрокарбонаты при этом рас­падаются с образованием углекислоты, в осадок выпадают карбонаты кальция и гидроксид магния.

Некарбонатная жесткость обусловливается присутствием кальцие­вых и магниевых солей серной, соляной •и азотной кислот и кипячением не устра­няется.

Жесткость воды представляет сумму эквивалентных концентраций ионов Са2+ и Mg2+ и выражается в миллиграмм-экви­валентах на 1 л; 1 мг-экв/л жесткости отвечает 20,04 мг/л ионов Са'2+ или 12,16 мг/л ионов Mg2+.

    Железо и марганец. Железо в природ­ных водах может находиться в виде ионов Fe2 и Fe3, неорганических (Fe(OH)3, Fe(OH)2, FeS) и органических коллоидов, комплексных соединений (главным образом органических комп­лексных соединений железа) и тонкодис­персной взвеси (Fe(OH)3, Fe(OH)2, FeS). В поверхностных водах железо содер­жится в виде органических комплексных соединений, коллоидов или тонкодиспер­сных взвесей. В подземных водах при от­сутствии растворенного кислорода же­лезо обычно находится в виде солей же­леза (II). Форма, в которой присутствуют в природных водах железо и марганец, зависит от величины рН и содержания кислорода.

    Обычно содержание железа и марганца не превышает нескольких десятков миллиграммов в 1 л воды. Хотя вода, содержащая и более высокие количества этих ионов, совершенно безвредна для здоровья, все же для питьевых, промыш­ленных и хозяйственных целей она не­пригодна, так как имеет неприятный чернильный или железистый привкус.

Наличие в воде железа и марганца мо­жет приводить к развитию в трубопро­водах железистых и марганцевых бакте­рий, использующих в процессе своей жизнедеятельности энергию, выделяе­мую при окислении соединений с низшей в соединения с высшей валентностью. Продукты жизнедеятельности бактерий накапливаются в таких количествах, что могут значительно уменьшить сече­ние водопроводных труб, а иногда и пол­ностью их закупорить.

Соединения кремния. Кремний при­сутствует в природных водах в виде ми­неральных и органических соединений. Выщелачивание силикатных пород обо­гащает природные воды кремниевой кис­лотой и ее солями. Кремниевая кислота очень слабая и диссоциирует на ионы в незначительной степени.

Наличие соединений кремния в пить­евой воде не вредно для здоровья. Если же вода используется для питания паро­вых котлов высокого давления, содержа­ние самого незначительного количества кремниевой кислоты недоступно из-за образования плотной силикатной накипи.

Соединения фосфора. Фосфор встре­чается в воде в виде ионов ортофосфор­ной кислоты или органического комплек­са, а также в виде взвешенных частиц органического и минерального проис­хождения. Соединения фосфора содер­жатся в природных водах в ничтожных количествах, однако имеют огромное зна­чение для развития растительной жизни в водоемах.

Растворенные в воде газы. Из раство­ренных в воде газов наиболее важными для оценки ее качества являются угле­кислота, кислород, сероводород, азот и метан. Углекислота, кислород и серово­дород при определенных условиях при­дают воде коррозийные свойства по отно­шению к бетону и металлам.

Углекислота встречается в боль­ших или меньших количествах во всех природных водах. Подземные воды обо­гащаются углекислотой за счет разложе­ния органических соединений в воде и почвах, а также вследствие протекающих в глубине геохимических процессов.

Уменьшение содержания С02 в при­родных водах может происходить благо­даря выделению углекислоты в атмосфе­ру, растворению карбонатных пород с образованием гидрокарбонатов или в результате фотосинтеза.

Агрессивные свойства углекислоты ос­нованы на ее способности взаимодейство­вать с карбонатными породами и перево­дить их в растворимые в воде гидрокар­бонаты, а также на некотором снижении рН среды, в результате чего усиливается электрохимическая коррозия некоторых металлов, например железа.

Углекислота не является коррозион­ным агентом, непосредственно воздейст­вующим на металл. Действие ее заклю­чается в растворении карбонатов состав­ных частей ржавокарбонатных отложе­ний, которые образуются в водопровод­ной сети. В результате этого процесса происходят дальнейшая коррозия ма­териала труб и образование новых отло­жений; вода приобретает желтую или красноватую окраску, неприятный вкус и содержит мелкие комья рыхлых желе­зистых веществ.

Кислород может находиться в природных водах в различных концент­рациях (0—14,6 мг/л), что определяется интенсивностью противоположно направ­ленных процессов, влияющих на содер­жание кислорода в воде. Обогащение воды кислородом происходит за счет растворения его из воздуха (в соответст­вии с парциальным давлением кислорода и температурой воды) и выделения вод­ной растительностью в процессе фото­синтеза

Окисление некоторых примесей воды, гниение органических остатков, броже­ние, дыхание организмов понижают со­держание кислорода в воде. Резкое уменьшение содержания кислорода в воде по сравнению с нормальным сви­детельствует о ее загрязнении.

Определение концентрации кислорода имеет большое значение при изучении физико-химического режима водоема, его самоочищения и биологической жизни.

Кислород интенсифицирует процессы коррозии металлов, поэтому в водах, которые используются для теплоэнерге­тических систем, количество растворен­ного кислорода лимитируется.

Сероводород попадает в при­родные воды в результате их соприкос­новения с гниющими органическими ос­татками (сероводород органического про­исхождения) либо с некоторыми мине­ральными солями (гипсом, серным кол­чеданом и др.). Последние, восстанавли­ваясь и разлагаясь, выделяют сероводо­род (сероводород неорганического проис­хождения).

Наличие в воде сероводорода органи­ческого происхождения свидетельствует о загрязненности водоисточника.

Сероводород необхо­димо удалять из воды, используемой для хозяйственно-питьевого или промыш­ленного водоснабжения.

Азот попадает в природные воды при поглощении его из воздуха, восста­новлении соединений азота денитрифи­цирующими бактериями, а также в ре­зультате разложения органических ос­татков. Несмотря на меньшую по сравне­нию с кислородом растворимость азота содержание последнего в природных во­дах больше из-за более высокого пар­циального давления его в воздухе.

Метан образуется в воде иногда в очень значительных количествах при разложении микробами клетчатки расти­тельных остатков.

Микроэлементы. Наряду с органиче­скими и минеральными примесями и за­грязнениями, которые находятся в при­родных водах в относительно больших количествах, в последних содержится ряд химических элементов в самых нич­тожных дозах (иод, бром, фтор, селен, теллур и др.) . В отличие от других примесей природных вод эти элементы почти не контролируются, хотя в настоящее время установлено, что ониоказывают большое влияние на здоровье человека.

Для нормальной жизнедеятельности человеческого организма содержание пе­речисленных элементов в воде должно на­ходиться в строго определенных преде­лах. При нарушении этих пределов могут возникать массовые заболевания, назы­ваемые геохимическими эндемиями.

На­пример, установлена суточная потреб­ность организма в иоде и фторе. Человек ежесуточно должен потреблять 0,06— 0,10 мг иода. Отсутствие или недостаток его в питьевой воде и пище нарушает нормальную деятельность щитовидной железы и приводит к тяжелому заболе­ванию — эндемическому зобу.

Содержание фтора в питьевой воде должно находиться в пределах 0,7— 1,5 мг/л. Недостаточное или избыточное содержание его в воде одинаково вредно и вызывает разрушение зубов и измене­ния в костях скелета.

Радиоактивные элементы. К примесям природных вод относятся и радиоактив­ные элементы. Допустимым пределом радио­активности в обычной питьевой воде счи­тается10-8—10-9 мкКи/л. Радиоактив­ность некоторых минеральных вод дости­гает 2,8 •10-3 мкКи/л.

Ядовитые вещества попадают в воду с промышленными отбросами и канализа­ционными сточными водами населенных пунктов, а также при умышленном отрав­лении водоема. Токсическая концентра­ция таких веществ обычно достигается уже при содержании их в количестве не­скольких миллиграммов (редко одного-двух десятков миллиграммов) в 1 л воды. К этой группе веществ относятся свинец,, цинк, медь, мышьяк, ртуть и др., а также органические вещества, называемые от­равляющими (ОВ).

Свинец, медь и цинк попадают в воду главным образом с промышленными сточ­ными водами. Наиболее ядовитыми из этих металлов является свинец, который накапливается в организме и может вы­звать опасное отравление.

Вода, подаваемая населению, не долж­на содержать более 0,03 мг/л свинца, 1 мг/л меди и 5 мг/л цинка. Определение содержания этих металлов требуется лишь в тех случаях, когда предпола­гается наличие их в источнике водоснаб­жжения.

Мышьяк в очень небольших концент­рациях может поступать в воду из почв, содержащих его соли. В значительных количествах он был обнаружен в некото­рых минеральных водах. В открытые водоемы мышьяк попадает со сточными водами населенных пунктов и промыш­ленных предприятий (от дубильных це­хов кожевенных заводов, красильных, ситцепечатных фабрик, металлообраба­тывающих заводов и т. д.). Его содержа­ние в питьевой воде не должно превы­шать 0,05 мг/л.

Известны ОВ самого различного дейст­вия, однако, попадая в воду, они ведут себя в основном как общеядовитые. На зараженность воды ОВ могут указывать некоторые внешние признаки и данные обычных методов контроля, так как на­личие ОВ вызывает изменение многих показателей качества воды, например рН, окисляемое, хлоропоглощаемости, содержания хлоридов и растворенного кислорода, а также данные биологиче­ских и бактериологических исследова­ний. Поэтому все перечисленные показа­тели в условиях отравления воды ОВ должны определяться и фиксироваться систематически.

 

Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Читайте также:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (97)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.028 сек.)
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7