Мегаобучалка Главная | О нас | Обратная связь


Основные компоненты современного ядерного реактора



2019-12-29 211 Обсуждений (0)
Основные компоненты современного ядерного реактора 0.00 из 5.00 0 оценок




Содержание

 

Введение

1. Основные компоненты современного ядерного реактора

2. Коррозионно-стойкие материалы

2.1 Общая характеристика коррозионно-стойких материалов

2.2 Новые коррозионно-стойкие материалы

2.3 Коррозионно-стойкие (нержавеющие) стали

2.4 Металлокерамические материалы

2.5 Конструкционные (коррозионно-стойкие) электротехнические сплавы

3. Методы защиты металлов используемых в энергетике от коррозии, их эффективность

Задача

Выводы

Литература

 


Введение

 

К настоящему времени доля электроэнергии, вырабатываемой на атомных электростанциях (АЭС), составляет около 13% всей производимой в России электроэнергии, причем в последние три года прирост выработки электроэнергии на АЭС составил 6—7%. В соответствии с долгосрочным прогнозом Минатома развития атомной энергетики до 2020 г., средний прирост производства электроэнергии на АЭС составит 5% в год. Как в настоящее время, так и в ближайшие 20 лет отечественная ядерная энергетика будет базироваться на корпусных водоохлаждаемых реакторах на тепловых нейтронах с водой под давлением типа ВВЭР и кипящих канальных уран-графитовых реакторах на тепловых нейтронах с водяным теплоносителем типа РБМК. Отечественные транспортные атомные энергетические установки также оснащены тепловыми водо-водяными реакторами с водой под давлением типа ВВЭР.

К числу требований, предъявляемых к конструкционным материалам атомных энергетических установок (АЭУ), относится необходимость сохранения в процессе длительной эксплуатации высокого уровня механических характеристик, и, прежде всего, деформационной способности, как элементов активной зоны, так и корпусов ядерных реакторов. Нейтронное облучение даже достаточно низкими повреждающими дозами (порядка 1020 нейтр/см2) снижает деформационную способность сталей и сплавов как при высоких, так и при низких температурах эксплуатации, повышает критическую температуру хрупко-вязкого перехода в материалах с ОЦК- и ГПУ-решетками, смещая ее в область положительных (рабочих) температур.

Интервал максимального проявления низкотемпературного радиационного охрупчивания применяемых и перспективных конструкционных материалов с различным типом кристаллической решетки (аустенитных сталей и сплавов, ферритных и ферритно-мартенситных хромистых сталей, титан-циркониевых сплавов и т.д.) совпадает с основным рабочим интервалом температур (200-350С) элементов активной зоны транспортных и стационарных водо-водяных энергетических реакторов. В связи с отмеченным, низкотемпературному радиационному охрупчиванию уделяется основное внимание при изучении воздействия нейтронного облучения на аустенитные хромоникелевые стали и сплавы, являющиеся одними из наиболее перспективных конструкционных материалов активной зоны атомных энергетических установок, а также на материалы с ОЦК- и ГПУ-решетками.

Достигнутые к настоящему времени успехи в изучении явлений низкотемпературного радиационного охрупчивания и радиационной хладноломкости связаны с работой научных коллективов, возглавлявшихся А.Д.Лмаевым, С.Н.Вотиновым, И.В.Горыниным, В.Ф.Зеленским, Ю.К.Конобеевым, И.С.Лупаковым, И.М.Неклюдо-вым, А.М.Паршиным, П.А.Платоновым, В.В.Рыбиным, В.А.Цыкановым и др.

К настоящему времени в области низкотемпературного радиационного упрочнения и охрупчивания проведены многочисленные исследования, касавшиеся, в основном, перлитных сталей, применяемых для изготовления корпусов водо-водяных энергетических реакторов (ВВЭР) транспортных и стационарных АЭУ. Вопросам низкотемпературного радиационного упрочнения и охрупчивания коррозионно-стойких сталей и сплавов посвящено значительно меньшее количество работ, в которых не учитывался динамический характер пластической деформации, связанная, с этим неоднородность и пластическая нестабильность, а также взаимодействие дислокационной структуры в процессе ее эволюции с продуктами структурных превращений на различных стадиях распада метастабильных твердых растворов. Поэтому, не смотря на длительное время, прошедшее с начала выполнения работ в этой области, не было предложено единой концепции низкотемпературного радиационного упрочнения и охрупчивания, учитывающей влияние условий облучения, испытания, а также структурных параметров, на развитие эффектов пластической нестабильности. Разработка такой концепции позволит сформулировать пути повышения пластичности, предельной повреждающей дозы, а, следовательно, и ресурса работы конструкционных материалов активной зоны в области низкотемпературного радиационного охрупчивания.

Теоретический и практический интерес представляет распространение концепции низкотемпературного упрочнения и охрупчивания сталей и сплавов под действием облучения на другие способы упрочнения материалов и разработка концепции изменения максимально достижимой для данного материала прочности в зависимости от его качества, учитывающей влияние структурных параметров на развитие эффектов пластической нестабильности.

Цель работы – характеристика коррозионно-стойких конструкционных материалов и возможности их применения в области энергетики.

Основные задачи работы:

1) рассмотреть основные компоненты современного ядерного реактора;

2) дать характеристику коррозионно-стойким материалам;

3) методы защиты металлов используемых в энергетике от коррозии, их эффективность.

 


Основные компоненты современного ядерного реактора

 

Для выработки электроэнергии в настоящее время в большинстве стран применяют легководные реакторы (LWR). Реакторы этого типа имеют две модификации: реакторы с водой под давлением (PWR) и кипящие реакторы (BWR), из которых имеют большее распространение реакторы с водой под давлением.

На рис. 1 представлена схема АЭС, оборудованная легководным реактором с водой под давлением. В корпусе реактора находится активная зона и первый контур. В первом контуре циркулирует вода, являющаяся теплоносителем и замедлителем. Вода отводит тепло от активной зоны к теплообменнику (парогенератор), в котором тепло передается второму контуру, где вырабатывается пар. Преобразование энергии происходит в турбогенераторе, где пар используется для выработки электроэнергии. Первый контур со всеми трубопроводами и компонентами заключен в специально созданную конструкцию, называемую контейнментом. Таким образом, любые радиоактивные продукты деления, которые могут выйти из топлива в воду первого контура, изолируются от окружающей среды.

В первом контуре вода находится под давлением 15,5 МПа и при максимальной температуре 315 °С. Эти условия предохраняют воду от кипения, поскольку точка кипения воды при давлении 15,5 МПа значительно выше 315 °С.

Топливо состоит из слабообогащенного диоксида урана (UO2), изготовленного в виде цилиндрических таблеток размером 8 × 12 мм. Таблетки спекаются при высокой температуре, обрабатываются до нужного размера и укладываются в трубки, которые заполняются гелием и герметически запаиваются. Получаются длинные топливные стержни с диаметром около 10 мм (рис. 2). Затем стержни собираются в сборки. Сборка является топливной единицей, содержащей большое количество энергии. Обычная 1000 МВт станция содержит около 200 топливных сборок и от 40 000 до 50 000 топливных стержней. Общее количество топлива в активной зоне реактора PWR мощностью 1000 МВт равно приблизительно от 100 до 110 т диоксида урана.

 

Рис. 1. Схема передачи тепла между элементами станции PWR:

1 — бетонная оболочка; 2 — нержавеющая планировка; 3 — турбина; 4 — генератор; 5 — конденсатор; 6 — градирня; 7 — парогенератор; 8 — циркулярный насос; 9 — корпус реактора; 10 — активная зона; 11 — компенсатор давления; 12 — контейнмент

 

В каждом реакторе от 16 до 25 ячеек (в зависимости от конструкции) оставлены свободными для регулирующих стержней. Они перемещаются при помощи управляющего стержня, проходящего через крышку корпуса реактора. Пар, выходящий из турбины, конденсируется в водоохлаждаемом конденсаторе, с помощью которого сбрасывается оставшаяся тепловая энергия. В некоторых системах охлаждения используется градирни.

 

Рис. 2. Размещение топлива в тепловыделяющем элементе для промышленных станций с реактором типа LWR: 1 — топливная таблетка; 2 — газовый зазор; 3 — заглушка; 4 — пружина; 5 — изолятор; 6 — оболочка

 


Таблица 1 Компоненты ядерного реактора и материалы

Компонент Применение Материал
Топливо Для осуществления реакции выделения и выработки энергии 233U, 235U, 239Pu, 241Pu
Теплоноситель Для отвода тепла из активной зоны реактора Обычная вода, тяжелая вода, органические жидкости, CO2, воздух, He, Na, Bi, эвтектика натрий — калий
Замедлитель Для замедления быстрых нейтронов деления Обычная вода, тяжелая вода, графит, Be, оксид бериллия
Отражатель Для уменьшения утечки нейтронов, для защиты персонала от ионизирующего излучения То же, что и в замедлителе
Управляющие стержни Для контроля критичности и мощности Cd, B, Hf, Gd, Ag, In
Конструкционные материалы Для оболочки топлива, для сооружения активной зоны Коррозионностойкая Cr—Ni сталь, сплавы на основе Al и Zr

 

Стоимость оборудования станции, осуществляющего выработку и передачу энергии, — корпус реактора, теплообменники, насосы, емкости, трубопроводы, составляет около 90 % от стоимости станции. Оборудование должно быть правильно сконструировано и изготовлено из экономичных, но гарантированно надежных материалов.

Радиационная повреждаемость конструкционных материалов

Ядерная энергетика предъявляет повышенные требования к используемым конструкционным материалам, технологии их производства и контролю работоспособности. Конструкционные материалы под действием облучения испытывают структурные превращения, оказывающие отрицательное влияние в первую очередь на механические свойства и коррозионную стойкость. Из всех видов облучения (нейтронами, α- и β-частицами, γ-излучения) наиболее сильное влияние оказывает нейтронное облучение.

Радиационностойкими материалами называют материалы, сохраняющие стабильность структуры и свойств в условиях нейтронного облучения.

Радиационную среду принято характеризовать нейтронным спектром и нейтронным потоком. Спектр определяется дискретными уровнями энергии нейтронов. В зависимости от энергии нейтронов, используемых для осуществления цепной ядерной реакции, различают реакторы на тепловых (медленных) и быстрых нейтронах. Нейтронный поток характеризует интенсивность радиационной среды и выражается числом нейтронов с энергией Е > 0,1 МэВ, пересекающих площадь 1 см2 за 1 с (нейтрон/см2 *с). Нейтронный поток, суммированный по времени (нейтрон/см2), или флюэнс нейтронов, характеризует суммарную дозу облучения и является мерой накопления радиационного воздействия. Более точной характеристикой дозы облучения является суммарное количество смещений в расчете на один атом (смещ/ат). Соударения вызывают смещения атомов или каскад смещений в решетке в зависимости от количества энергии, передаваемой нейтроном атому металла. Подвергшийся удару нейтроном первый атом, подобно биллиардному шару, ударяя по другим атомам, вызывает в решетке дополнительные смещения. В результате развития каскада образуются объемы с высокой концентрацией вакансий, по периферии окруженные зонами с повышенной плотностью межузельных атомов. Один нейтрон способен создать в алюминии более 6000 вакансий, в бериллии с большей энергией межатомной связи — более 450 вакансий.

Помимо смещений большие нейтронные потоки за счет своей энергии возбуждают атомы, усиливают их колебания (это явление Инденбом назвал "радиационной тряской"), что сопровождается локальным повышением температуры. Рост температуры способствует радиационному отжигу, сопровождающемуся аннигиляцией вакансий и межузельных атомов. Высокие температуры и нейтронное облучение могут вызвать в материале ядерные реакции с образованием гелия, что в свою очередь приводит к появлению газовых пузырей по границам зерен.

Структурные изменения приводят к изменению механических свойств. В результате при температуре ниже температуры рекристаллизации — низкотемпературного облучения — металл упрочняется, но теряет вязкость и пластичность. Влияние суммарного нейтронного потока Ф на временное сопротивление, предел текучести и пластичность при 20 °С аустенитной хромоникелевой стали. Сталь приобретает максимальное упрочнение при Ф = 3·1019 нейтрон/см2, причем σ0,2 растет интенсивнее σв, что приводит к снижению способности к деформационному упрочнению. Дальнейшее увеличение потока практически не влияет на свойства стали.

Действие низкотемпературного облучения на свойства напоминает наклеп — холодную пластическую деформацию. Однако, несмотря на такую аналогию, механизмы воздействия радиационного повреждения и наклепа на структуру материала принципиально различны, поскольку радиационное повреждение связано преимущественно с образованием точечных дефектов, тогда как деформационное упрочнение связано в основном с появлением линейных дефектов.

В условиях облучения выше температуры рекристаллизации (высокотемпературное облучение) роль точечных радиационных дефектов снижается. Вакансии и межузельные атомы частично аннигилируют друг с другом, частично взаимодействуют с примесями, дислокациями, границами раздела. Оставшиеся межузельные атомы и вакансии объединяются в кластеры, которые в свою очередь могут превращаться соответственно в дислокационные петли межузельного или вакансионного типов.

Высокотемпературное облучение активизирует диффузионные процессы и способствует распаду пересыщенных твердых растворов (старению). Этим объясняется высокотемпературная хрупкость аустенитных хромоникелевых сталей. Активизацией диффузионных процессов также объясняется снижение длительной прочности при облучении. Падение жаропрочности растет с увеличением температуры и интенсивности нейтронного потока.

При высокотемпературном облучении большими нейтронными потоками в аустенитных сталях и сплавах на основе Ni, Ti, Mo, Zr, Be зарождаются и растут вакансионные поры, а более подвижные межузельные атомы уходят на дальние стоки (краевые дислокации, границы зерен и др.), что приводит к заметному увеличению объема металла — радиационному распуханию.

Объем аустенитных сталей, облученных при рабочей температуре 450 °С, линейно растет с увеличением нейтронного потока. Объем может увеличиться на 20 % и более. Распухание усиливается в результате скопления в микропорах газов, образовавшихся при облучении.

Легирование хромоникелевых сталей Ti, Mo, Nb снижает их распухание. Высокохромистые ферритные и перлитные стали с меньшей растворимостью водорода характеризуются меньшей склонностью к распуханию.

Воздействие облучения на полимерные материалы приводит к разрыву полимерных цепочек. Смещение обрывков цепей и свободных радикалов изменяет свойства полимеров и способствует их разрушению.

При облучении резко снижается коррозионная стойкость металлов и сплавов. Вода и водяной пар являются теплоносителями в водном и водно-паровом трактах АЭС. Вследствие радиолиза меняется состав электролита — происходит разрушение молекул воды с образованием ионов и атомов кислорода, водорода и щелочной гидроксильной группы —OH. Конструкционные реакторные материалы, подвергающиеся облучению, работают в контакте с водой и паром. Образующийся кислород окисляет металл, а водород его наводораживает и тем самым дополнительно охрупчивает. Радиолиз воды и увеличение концентрации гидрооксильных групп способствует растворению поверхностных оксидных пленок, в обычных условиях защищающих металл от коррозии.

Скорость коррозии сплавов на основе алюминия в водной среде в условиях облучения возрастает в 2–3 раза. Аустенитные хромоникелевые стали во влажном паре подвержены межкристаллической коррозии и коррозионному растрескиванию.

Помимо изменения механических свойств (упрочнению и снижению пластичности) и вакансионного распухания, радиационное повреждение сталей приводит к появлению новых эффектов: радиационной ползучести, высоко- и низкотемпературному радиационному охрупчиванию (ВТРО и НТРО).

 




2019-12-29 211 Обсуждений (0)
Основные компоненты современного ядерного реактора 0.00 из 5.00 0 оценок









Обсуждение в статье: Основные компоненты современного ядерного реактора

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (211)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.013 сек.)