Мегаобучалка Главная | О нас | Обратная связь


Коррозионно-стойкие (нержавеющие) стали



2019-12-29 170 Обсуждений (0)
Коррозионно-стойкие (нержавеющие) стали 0.00 из 5.00 0 оценок




 

В зависимости от химического состава коррозионно-стойкие стали делятся на хромистые и хромоникелевые

Хромистые стали

Стали мартенситного класса марок 20X13, 30X13 и 40X13 содержат в среднем около 13% хрома. Это минимальное количество хрома, делающее сталь нержавеющей.

Указанные стали устойчивы против коррозии в атмосфере, слабых растворах органических кислот и солей и других агрессивных средах.

Для повышения механических свойств и коррозионной стойкости стали подвергаются упрочняющей термической обработке. Коррозионная стойкость сталей повышается также после шлифования и полирования.

Чем больше в хромистых сталях углерода, тем больше выделяется карбидов хрома и тем сильнее снижается коррозионная стойкость. С повышением содержания углерода возрастает также хрупкость сталей. С понижением содержания углерода хромистые стали по структурному признаку переходят из мартенситного класса в мартенситно-ферритный (сталь марки 12X13) и даже чисто ферритный (сталь марки 08Х13) классы. Стали марок 08Х13, 12X13 и 20Х13 являются не только коррозионно-стойкими, но и жаропрочными. Они могут использоваться при температурах 500-650 °С в нагруженном состоянии. Недостатком хромистых сталей с 13% хрома является низкая стойкость против коррозионного растрескивания и точечной коррозии в средах, содержащих ионы хлора.

Хромоникелевые стали

Стали марок 20X17Н2 (мартенситного класса) и 14Х17Н2 (мартенситно-ферритного класса) имеют более высокие механические свойства и коррозионную стойкость, чем рассмотренные хромистые стали. Сталь марки 20X17Н2 хорошо штампуется, удовлетворительно обрабатывается резанием, сваривается всеми видами сварки. Удовлетворительные технологические свойства имеет и сталь марки 14X17Н2. Она устойчива по отношению к азотной кислоте, многим органическим кислотам. Сталь не только коррозионно-стойкая, но и жаропрочная и может применяться при температуре до 400 °С.

Низкоуглеродистые ферритные стали

Эти стали имеют высокую коррозионную стойкость, содержат 17-28% хрома (марки 12X17, 08X17Т, 15Х25Т и др.). Они применяются для изготовления изделий, работающих в окислительных средах (азотной кислоте), в водных растворах аммиака, в аммиачной селитре и других агрессивных средах. Стали применяются в отожжённом состоянии или без термообработки.

Недостатками высокохромистых сталей ферритного класса являются: склонность к росту зерна при нагреве, склонность к охрупчиванию в интервале температур 400-500 °С, трудности в обеспечении свариваемости, склонность к межкристаллитной коррозии, невысокие прочностные свойства.

Для предотвращения межкристаллитной коррозии необходимо уменьшить в стали содержание углерода или ввести в её состав карбидообразующие элементы - титан (в количестве не менее пятикратного по отношению к содержанию углерода) или ниобий (в десятикратном отношении). Таким образом, стали марок 12X17 и 15X28 (без титана) для изготовления сварных конструкций не рекомендуются. И, наоборот, стали марок 08X17Т и 15Х25Т могут использоваться для изготовления сварных конструкций.

Высокохромистые стали ферритного класса марок 08X17Т, 12X17, 15Х25Т и 15X28 используются также в качестве жаростойкого материала, причём у сталей марок 08X17Т, 15Х25Т и 15X28 жаростойкость имеет преимущество по сравнению с коррозионной стойкостью.

Коррозионно-стойкая подшипниковая сталь марки 95X18 мартенситного класса применяется для изготовления подшипников для нефтяного оборудования, подшипников, работающих в морской воде, растворах кислот и других агрессивных средах.

Хромоникелевые стали аустенитно-мартенситного (переходного) класса

Эти стали широко применяются в качестве конструкционного материала в различных областях техники. Химическая стойкость сочетается у них с высокой прочностью, хорошей свариваемостью и достаточной пластичностью.

Высокие механические свойства стали данного класса получают после комплексной термической обработки, состоящей из закалки или нормализации от 975-1130 °С, обработки холодом при -70 °С или высокого отпуска для дестабилизации аустенита при 740-760 °С и старения при 350-500 °С с последующим охлаждением на воздухе.

После закалки стали аустенитно-мартенситного класса имеют структуру аустенита. Они мягкие, обладают высокой пластичностью и хорошо деформируются. При последующей обработке холодом часть аустенита превращается в мартенсит, что повышает прочность стали. Дальнейшее повышение прочности происходит при старении за счёт выделения промежуточных фаз из мартенсита. Однако старение уменьшает пластичность стали. Оптимальное сочетание прочности и пластичности обеспечивается легированием стали молибденом и алюминием.

Нередко после закалки обработку холодом заменяют холодной пластической деформацией.

Хромоникелевые и хромомарганцевоникелевые стали аустенитно-ферритного и аустенитного классов

Стали этих классов широко применяются в химической, нефтяной и пищевой промышленности, в самолёто-и судостроении, в строительстве и в быту. Это объясняется высокими механическими свойствами, немагнитностью, хорошей свариваемостью, высокой прочностью и пластичностью в сварных соединениях.

Стали аустенитно-ферритного класса после оптимальной термической обработки (закалки в воде или воздухе с 950-1050 °С) имеют структуру, состоящую из равномерно чередующихся зерен феррита и аустенита (с соотношением фаз примерно 1:1).

У сталей данного класса имеется ряд преимуществ по сравнению с однофазными аустенитными сталями: более высокая прочность при достаточной пластичности и вязкости, отсутствие склонности к росту зерна при сохранении двухфазной структуры, меньшая склонность к межкристаллитной коррозии и коррозионному растрескиванию, меньшее содержание дефицитного никеля.

Существенный недостаток сталей аустенитно-ферритного класса — рост хрупкости при 400-600 °С, поэтому их предельная рабочая температура составляет 350 °С.

Хромоникелевые стали аустенитного класса нашли широкое применение в различных отраслях машиностроения в качестве коррозионно-стойкого и жаростойкого конструкционного материала.

Эти стали после закалки в воде, масле или на воздухе с 1000-1100 °С имеют однородную структуру аустенита. При этом достигается наиболее высокая коррозионная стойкость в окислительных средах в сочетании с хорошей пластичностью при умеренной прочности.

Наибольшее распространение в технике получили стали марок 12Х18Н10Т, 08Х18Н10Т и 10Х17Н13М2Т, имеющие высокую коррозионную стойкость в большом диапазоне агрессивных сред и отличающиеся хорошей технологичностью (свариваемостью, штампуемостью).

Сталь марки 12Х18Н9 склонна к межкристаллитной коррозии, поэтому после закалки её нельзя нагревать выше 400 °С, т.е. практически нельзя сваривать различными методами сварки, за исключением точечной.

Стали с низким содержанием углерода (марки 03X18Н11 и др.) менее склонны к межкристаллитной коррозии, они имеют повышенную коррозионную стойкость в азотной кислоте высоких концентраций и в других агрессивных средах, хорошую свариваемость, пластичность, высокую способность к полированию.

Для уменьшения склонности хромоникелевых аустенитных сталей к межкристаллитной коррозии в состав стали вводят также титан и реже ниобий (марки 08Х18Н10Т, 12Х18Н10Т, 08Х18Н12Б и др.). Эти стали можно успешно использовать для сварных конструкций, работающих в агрессивных средах.

Положительное влияние на увеличение коррозионной стойкости сталей в ряде сред (органические кислоты, морская вода и др.) оказывают добавки молибдена (2-4%). Однако стали, содержащие молибден (марки 08Х17Н13М2Т, 10Х17Н13М2Т и др.), обладают склонностью к охрупчиванию в результате нагрева при 600-750 °С и имеют более низкую коррозионную стойкость в условиях действия азотной кислоты повышенных концентраций, чем хромоникелевые стали.

Хромомарганцевоникелевые аустенитные стали

Для экономии остродефицитного никеля взамен хромоникелевых аустенитных сталей выпускаются хромомарганцевоникелевые стали, где часть никеля заменяется марганцем.

Хотя коррозионная стойкость хромомарганцевоникелевых сталей несколько ниже, чем сталей, содержащих 18% хрома и 10% никеля, они широко применяются в промышленности для изготовления бытовых приборов, пищевого оборудования, установок для сжиженных газов и т.д. Хромомарганцевоникелевые стали марок 10Х14Г14Н4Т и 07Х21Г7АН5 применяют в качестве криогенного материала при температурах -196 °С, -253 °С. Коррозионно-стойкие (кислотостойкие) сплавы на железоникелевой и никелевой основе при изготовлении химической аппаратуры, работающей в агрессивных кислотных средах (в серной, соляной, азотной, фосфорной кислотах и их смесях различной концентрации) при различных температурах необходимо применять материалы с более высокой коррозионной стойкостью, чем нержавеющие стали. Для этих целей используют кислотостойкие сплавы на железоникелевой и никелевой основах.

Сплавы на железоникелевой основе применяются для изготовления сварных конструкций в целлюлозно-бумажной промышленности, производстве минеральных удобрений и в других отраслях техники при работе в серной кислоте различных концентраций и других агрессивных средах. Сплавы на никелевой основе, содержащие большое количество молибдена, применяют в особо агрессивных средах (в соляной, серной, фосфорной, концентрированной уксусной и других кислотах) при повышенных температурах.


2.4 Металлокерамические материалы

 

Металлокерамические материалы получаются прессованием деталей из соответствующих смесей порошков в стальных прессформах под давлением 1000 — 6000 кг/см2 с последующим спеканием спрессованных полуфабрикатов при температуре ниже точки плавления основного компонента сплава.

Указанным методом получаются пористые изделия.

Размеры прессованных заготовок после спекания несколько изменяются.

Виды:

1. контактные материалы (вольфрам — медь, вольфрам — серебро, молибден — серебро, серебро—графит, серебро — окись кадмия и др.

2. магнитные материалы (железо - пластические композиции для сердечников пупиновских катушек, карбонильное железо высокой чистоты, постоянные магниты высокой подъёмной силы из сплавов железа с алюминием, никелем, кобальтом и т.

3. другие металлокерамические материалы (прутки и проволока из медных порошков, компактные материалы из порошков карбонильного железа, сварочные электроды, металлокерамические припои и др.).

4. твёрдые сплавы

Металлокерамические антифрикционные материалы разделяются на три группы: а) пористые подшипники, б) компактные металлокерамические антифрикционные материалы, в) антифрикционные материалы с неметаллическими составляющими.

Химический состав пористых металлокерамических антифрикционных материалов выбирается в зависимости от условий работы подшипника и технологического процесса.

Область применения пористых подшипников.

Пористые подшипники могут применяться взамен бронзовых подшипников скольжения и шарикоподшипников для работы при pv до 70 кгм1слРсс.

Подъёмно-транспортное машиностроение. Эскалаторы метрополитена, ролики угольных транспортёров, катки мостовых кранов и др.

Прочие отрасли промышленности. Вспомогательные устройства двигателя дизеля, киноаппаратура, звуковые протекторы, патефоны, вентиляторы, сепараторы для шарикоподшипников и др.

Компактные (непористые) металлокерамические антифрикционные материалы.

Применяемые в Англии и США непористые антифрикционные металлокерамические материалы можно разбить на три группы:

а) материалы, изготовляемые из дроблёной и декарбюризованной стальной стружки прессованием, спеканием и последующей горячей штамповкой;

б) металлокерамические материалы из свинцовистой бронзы, применяемые в виде втулок, биметаллических вкладышей и ленты (металлокерамический слой на стальной основе);

в) трёхслойный материал, состоящий из стальной ленты, на которую напрессовываются порошки меди и никеля.

Толщина металлокерамического слоя — около 0,5 мм.

После спекания поры этого слоя заполняются расплавленным свинцовистым баббитом (под вакуумом), который образует также поверхностный слой (толщиной 0,02 — 0,075 мм).

Металлокерамические фрикционные материалы

Основными компонентами металлокерамических фрикционных материалов являются медь, олово, свинец и графит.

Ряд сплавов содержит также железо, кремний и цинк.

Вследствие невысокого сопротивления разрыву и срезу металлокерамические фрикционные материалы наносятся на стальную основу (диск или ленту) тонким слоем толщиной от 0,25 до 8—10 мм и иногда до 6 мм.

Металлокерамические фрикционные материалы обладают высокими эксплуатационными свойствами, износоустойчивостью и коррозионной стойкостью.

Они могут работать при высоких температурах (в некоторых случаях нагрев при торможении доходит до 540° С) и высоких давлениях (до 70 кг/см2).

Применяются в качестве фрикционных прокладок для тормозных дисков, лент и колодок на самолётах и танках.

 



2019-12-29 170 Обсуждений (0)
Коррозионно-стойкие (нержавеющие) стали 0.00 из 5.00 0 оценок









Обсуждение в статье: Коррозионно-стойкие (нержавеющие) стали

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (170)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)