Мегаобучалка Главная | О нас | Обратная связь


Конструкционные (коррозионностойкие) электротехнические сплавы



2019-12-29 174 Обсуждений (0)
Конструкционные (коррозионностойкие) электротехнические сплавы 0.00 из 5.00 0 оценок




 

Большая часть полуфабрикатного никеля (НПО—НПЗ) и конструкционных сплавов на его основе производится в виде листов, лент, прутков, проволоки, трубок. По технологическим характеристикам при обработке давлением и термической обработке они весьма сходны с аналогичными полуфабрикатами из меди и однофазных сплавов на ее основе, поскольку оба этих металла имеют г. ц. к. решетку. Основной вид термической обработки этих полуфабрикатов — рекристаллизационный отжиг, причем, как и для сплавов на основе меди, он может быть промежуточным или окончательным. Как и для сплавов предыдущей группы, заданные механические свойства полуфабрикатов могут быть получены полным промежуточным отжигом и последующей неполной нагартовкой или достаточно сильной нагартовкой с последующим неполным отжигом. В зависимости от степени нагартовки различают твердый, полутвердый или мягкий материал (например, лента твердая, полутвердая, мягкая).

При выборе режимов рекристаллизационного отжига следует исходить ,из диаграмм рекристаллизации для данного сплава и избегать таких режимов деформации и последующего отжига, которые привели бы к резкому росту рекристаллизованного зерна, Для никеля марки НО критическая степень деформации составляет ~5%; зерно начинает наиболее интенсивно расти при температурах >1000 °С. Разупрочнение нагартован-ного никеля начинается при температурах отжига >300 °С, пластические характеристики резко возрастают после отжига при температурах >500 °С. Таким образом, температура начала рекристаллизации никеля НО составляет ~500 °С конца 700—800 °С.

Температуры рекристаллизации и отжига конструкционных (коррозионностойких) сплавов на основе никеля приведены в табл. 31. Для всех марок полуфабрикатного никеля эти температуры указаны одинаковыми, что вполне допустимо из-за сравнительно небольшого разброса и перекрытия этих температур, обусловленных обычно примесями. Для полуфабрикатного никеля рекомендуемая температура неполного отжига (для уменьшения остаточных напряжений) составляет 300 °С; для остальных марок сплавов она в справочнике А. П. Смирягина с соавторами не указана. Однако можно полагать, что и для других сплавов температура отжига для уменьшения остаточных напряжений будет близка к этой величине из-за близкой природы сплавов.

Термоэлектродные сплавы (хромель, алюмель, копель, константен и другие), а также сплавы высокой жаростойкости и электросопротивления (нихромы и ферронихромы) в процессе производства из них проволоки также подвергают лишь промежуточному отжигу для снятия нагартовки и возможности дальнейшего деформирования или окончательному отжигу для придания полуфабрикатам нужных механических или физико-химических свойств (например, заданного электросопротивления и жаростойкости).

Большинство описанных выше сплавов являются однофазными и представлены твердыми растворами. Некоторые из них, например нихромы Х40Н60 и Х50Н50, двухфазны и представлены у- и а-фазами с г. ц. к. и о. ц. к. решетками, но эта двухфазность не используется для упрочняющей термической обработки.

Для получения светлой неокисленной поверхности целесообразно проводить отжиг никелевых сплавов всех типов в защитных атмосферах. Если никель и его сплавы достаточно чисты по кислороду и не содержат закиси никеля Ni20, то лучшей защитной атмосферой служит очищенный водород. Единственный ее недостаток —взрывоопасность, но практический опыт работы на печах с водородной атмосферой показывает, что при соблюдении правил техники безопасности неприятных последствий не бывает.

Если же никель и его сплавы содержат закись никеля Ni20 (обычно по границам зерен), то развивается водородная болезнь никеля из-за диффузии водорода в никель и реакции Ni20 + 2H = 2Ni + H20: Поскольку молекулы воды неспособны к обратной диффузии через металл, на границах зерен образуются несплошности, заполненные парами воды высокого давления, что облегчает зарождение и развитие микротрещин, приводящих к разрушению металла, иногда даже и без приложения внешних нагрузок.

Светлый отжиг никеля и его сплавов можно также производить в атмосфере диссоциированного и не полностью сожженного аммиака, содержащего >5% водорода, а также в других газовых средах, в которых сумма парциальных давлений газов-окислителей меньше или равна упругости кислорода диссоциирующего оксида.

Жаропрочные никелевые сплавы подвергают следующим видам термической обработки: отжигу, закалке и старению и неполному отжигу для уменьшения остаточных напряжений.

Основное назначение отжига — это снятие нагартовки после деформации, так что он проводится между последовательными стадиями обработки давлением для смягчения материала и продолжения дальнейших технологических операций. Лишь в редких случаях для листов из малолегированных жаропрочных никелевых сплавов — типа ЭИ437 рекристаллизационный отжиг служит окончательной термической обработкой, формирующей механические и технологические свойства полуфабрикатов. Лиеты из сплавов типа ЭИ437 отжигают при 1150 °С в течение 2—3 мин с быстрым охлаждением на воздухе или в воде. При более высоких температурах происходит интенсивный рост зерна (рис. 117).

Ускоренное охлаждение этих сплавов после рекристаллизационного отжига необходимо, поскольку они дисперсионно твердеют и при замедленном охлаждении может произойти распад пересыщенного твердого раствора с упрочнением отжигаемого материала и потерей им пластичности. Чем сильнее легированы сплавы типа нимоник, тем больше их склонность к распаду после рекристаллизационного отжига.

Как уже .отмечалось, основой выбора режимов рекристаллизационного отжига служат диаграммы рекристаллизации. Различают три типа диаграмм рекристаллизации. Диаграммы рекристаллизации первого типа отображают зависимость средней величины зерна от степени холодной деформации и температуры последующего рекристаллизационного отжига при определенной, одинаковой для всех температур отжига длительности выдержки. Диаграммы рекристаллизации второго рода показывают зависимость средней величины зерна от степени и температуры горячей деформации; никакого дополнительного рекристаллизационного отжига при этом не производится. Диаграмма рекристаллизации второго рода для сплава ЭИ437 (аналога сплава Нимоник 80) приведена на рис. 118. Здесь, как и на диаграммах рекристаллизации первого рода, четко проявляются критические степени деформации, при которых вырастает наибольшее рекристаллизованное зерно (в процессе горячей деформации и последующего охлаждения).

На диаграммах рекристаллизации третьего типа указываются два типа кривых. Один тип кривых отражает величину зерна непосредственно после горячей деформации при разных температурах, а второй — величину зерна после окончательной термической обработки. На рис. 119 приведена как пример диаграмма рекристаллизации третьего рода для сплава ХН70ВМТЮ (ЭИ617). Нижние кривые дают величину зерна после горячей осадки на прессе, а верхние — после закалки с 1200 °С и старения при 1050 °С в течение 4 ч.

Структура сплавов после горячей деформации и даже рекристаллизации довольно часто бывает разнозернистой.

 




2019-12-29 174 Обсуждений (0)
Конструкционные (коррозионностойкие) электротехнические сплавы 0.00 из 5.00 0 оценок









Обсуждение в статье: Конструкционные (коррозионностойкие) электротехнические сплавы

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (174)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)