Мегаобучалка Главная | О нас | Обратная связь


УПРУГИЕ ВОЛНЫ, РАСПРОСТРАНЯЮЩИЕСЯ В СКВАЖИНЕ И ОКОЛОСКВАЖИННОМ ПРОСТРАНСТВЕ. ИНФОРМАТИВНЫЕ ВОЛНЫ



2019-12-29 308 Обсуждений (0)
УПРУГИЕ ВОЛНЫ, РАСПРОСТРАНЯЮЩИЕСЯ В СКВАЖИНЕ И ОКОЛОСКВАЖИННОМ ПРОСТРАНСТВЕ. ИНФОРМАТИВНЫЕ ВОЛНЫ 0.00 из 5.00 0 оценок




АКУСТИЧЕСКИЕ ИССЛЕДОВАНИЯ В НЕФТЕГАЗОВЫХ СКВАЖИНАХ - СОСТОЯНИЕ И НАПРАВЛЕНИЯ РАЗВИТИЯ

(Обзор отечественных и зарубежных источников информации)

СОДЕРЖАНИЕ
Введение
1. Упругие волны, распространяющиеся в скважине и околоскважинном пространстве. Информативные волны
2. Скважинные приборы акустического каротажа
2.1. Приборы массового применения для исследований открытых скважин
2.2. Скважинные приборы для регистрации полных волновых пакетов
2.3. Скважинные приборы акустической цементометрии
2.4. Основные конструктивные элементы измерительных зондов
2.5. Передача первичных данных из скважинных приборов в компьютеризированные цифровые каротажные лаборатории
2.6. Поверка и калибровка приборов АК
3. Решение геологических задач
3.1. Литологическое расчленение пород
3.2. Определение пористости пород с использованием измеренных значений Dtp
3.3. Определение пористости пород с использованием интервального времени Dts поперечной волны
3.4. Оценка трещиноватости и напряженного состояния пород по данным дипольного зонда
3.5. Выделение проницаемых, в том числе трещиноватых, пород по параметрам волны Стоунли
3.6. Оценка характера и коэффициентов насыщенности коллекторов
4. Решение инженерных задач в обсаженных скважинах
4.1. Определение характеристик пород для расчета параметров гидроразрывов пластов
4.2. Выделение интервалов напряженного состояния пород и потенциальных участков разрушения обсадных колонн
5. Оценка качества цементирования обсадных колонн
6. Другие виды акустических измерений и воздействий на горные породы в нефтегазовых скважинах
6.1. Акустическая шумометрия
6.2. Акустическое воздействие на продуктивные пласты (интенсификация дебитов)
6.3. Локация подземных выработок и кавернометрия
6.4. Межскважинное прозвучивание
7. Заключение
8. Литература

ВВЕДЕНИЕ

После появления на рубеже 60-70-х годов серийных отечественных приборов акустического каротажа (АК) объемы применения метода в стране быстро стабилизировались и составили в конце 80-х годов 8-10% от общего объема ГИС [33]. В условиях применения аналоговой измерительной техники и ручной обработки данных для решения разнообразных задач использовались преимущественно характеристики продольной (Р) головной волны. Эта волна фиксируется в первых вступлениях регистрируемых сигналов АК и не искажена интерференцией с другими, более медленными волнами Значения ее скорости v распространения (интервального времени Dt = 1/ v), амплитуд А и эффективного затухания а широко применялись для расчленения разрезов скважин, определения коэффициентов Кп пористости пород с межзерновыми порами и выделения на этой основе гранулярных коллекторов, оценки качества цементирования обсадных колонн.

На уровне лабораторных и опытных скважинных работ в те годы изучались возможности применения для решения геолого-технических задач характеристик других, помимо продольной, типов волн поперечной S, Лэмба L, Стоунли St, отраженных и т.д. Объемы таких исследований в России ограничивались единицами, в лучшем случае десятками скважин в год. За рубежом комплексное применение характеристик Р, S, L, St волн стало обычным явлением с начала 80-х годов [131], с момента широкого применения цифровой техники при производстве ГИС. В те же годы начались исследования по изучению горных пород методом АК через обсадную колонну [115, 58, 56, 29].

В 80-х годах ведущие зарубежные фирмы применили высокочастотные приборы (сканеры) для детального изучения строения стенок скважин и обсадных колонн. В открытых скважинах первоочередными задачами стало расчленение тонкочередующихся пород и идентификация трещинно-каверновых коллекторов в уплотненных и заглинизированных разрезах В обсаженных скважинах их преимущество заключается в детальной оценке технического состояния обсадной колонны и цементного камня, в том числе в выделении в цементе вертикальных каналов и интервалов газонасыщенного (вспученного) цемента Появились акустические шумомеры для определения интервалов поступления пластовых флюидов в скважину и их затрубных перетоков. Многочисленные опытные образцы таких приборов, а иногда и серийные приборы (например, акустический "телевизор" [САТ-1], индикатор шума [АКШ]) появились в те же годы в СССР. Несмотря на положительные результаты исследований, эти приборы не нашли массового применения вследствие изъянов, присущих аналоговым системам измерений, и невостребованности производством в условиях заранее запланированных схем эксплуатации, выбраковки и ликвидации скважин.

Состояние разработок и применения отечественных приборов АК изменилось в 90-е годы после появления в России доступной цифровой вычислительной техники. Несмотря на обвальное сокращение финансирования НИОКР, объемов бурения и ГИС, почти одновременно были испытаны несколько типов приборов АК с антеннами приёмников для исследований разрезов открытых и обсаженных скважин [9, 52, 61], акустической цементометрии [42, 53] и АК-сканеров [68]. Схемотехнические решения этих приборов близки к уровню зарубежных образцов. Ещё более многочисленны попытки модернизации приборов предыдущего поколения (АКВ-1, АКШ, АК-4, МАК-5, АК-П и др.) с целью цифровой регистрации полных волновых сигналов. Попытки базировались на оснащении приборов телеметрическими системами, позволяющими изменять режимы работы измерительных зондов, и оцифровке сигналов АК на дневной поверхности с помощью управляющей ЭВМ.

С развитием технических средств АК постоянно увеличивалось количество геологических и технических задач, решаемых в открытых и обсаженных скважинах, и качество самих решений. При изучении геологических разрезов - это литологическое расчленение и расчет упругих (прочностных) свойств пород, локализация трещинных зон, трещин гидроразрывов и интервалов напряжённого состояния пород, определение коэффициентов межзерновой и вторичной (трещинно-каверновой) пористости коллекторов и характера их насыщенности, выделение проницаемых интервалов в чистых и глинистых породах, расчет синтетических сейсмограмм и интеграция данных АК с наземными и скважинными сейсмическими данными. Технические задачи в обсаженных скважинах включают в себя выявление нарушений обсадных колонн (порывов, смятий, коррозии), оценку заполнения затрубного пространства цементом и степени его сцепления с колонной и породами, обнаружение в цементном камне вертикальных каналов и зон вспученного (газонасыщенного) цемента, определение интервалов поступления в скважину пластовых флюидов и их заколонных перетоков, интенсификацию дебитов.

В аналоговой технике для решения далеко не всех перечисленных задач предназначались отдельные приборы АК, например, приборы для исследований открытых скважин (СПАК, АКШ, АКВ, АК-4 и др.) и для оценки качества цементирования обсадных колонн (АКЦ, МАК-2;3 и др.). Для приборов массового применения такое разделение функций сохранилось и с переходом на цифровую технику. Теперь это связано с нежеланием использовать универсальные, более сложные и дорогие приборы для решения простых задач или со специфичной конструкцией отдельных приборов, например, сканера с электронной коммутацией неподвижных преобразователей. Приборы универсального назначения обеспечивают регистрацию полных волновых сигналов, содержащих информацию обо всех типах волн, распространяющихся в данных условиях измерений. С их помощью почти с равным успехом решается большинство перечисленных выше геологических и технических задач. Хотя конструкции большинства таких приборов обеспечивают их работоспособность в составе комбинированных сборок, сложность и высокая цена ограничивают их применение решением задач, не имеющих других вариантов решения в конкретных геолого-технических условиях.

УПРУГИЕ ВОЛНЫ, РАСПРОСТРАНЯЮЩИЕСЯ В СКВАЖИНЕ И ОКОЛОСКВАЖИННОМ ПРОСТРАНСТВЕ. ИНФОРМАТИВНЫЕ ВОЛНЫ

Необходимость возврата к обсуждению такой, казалось бы, изученной темы обусловлена неоднозначностью идентификации (расшифровки) той части волнового пакета АК, которая следует буквально после первого колебания поперечной волны. При невозможности полной идентификации этой части пакета все колебания относят к псевдорэлеевским волнам ( рис. 1 ,а). Основание такого решения заключается в том, что скорости поверхностных волн, распространяющихся вдоль стенки скважины и составляющих эту часть волнового пакета, только не намного меньше скорости vs поперечной волны (0,9 vs для волны Рэлея) или стремятся к ней (волна Лява в обсаженной зацементированной скважине). Иногда в пакете "псевдорэлеевских" волн выделяют интервал времени, в котором возможны колебания волны Стоунли [88, 120, 131]. Другие авторы выделяют в этом временном интервале на частотах больше 1 кГц фазу Эйри (Airy phase), скорость которой равна 0,6-0,85 vж[126].

Как было отмечено в [39], поверхностная волна, распространяющаяся вдоль цилиндрической границы, носит множество названий: Лэмба, гидроволны, водной волны, низкоскоростной водной волны, нулевой нормальной волны, Лэмба-Стоунли. В этой же работе было предложено рассматривать эту волну в скважинах большого диаметра (l/rС<1) как (поверхностную) волну Стоунли, условия распространения которой аналогичны плоской границе двух сред, а в скважинах малого диаметра (l/rс>1) - как (нормальную) волну Лэмба, которая распространяется в столбе жидкости, играющем роль волновода. Авторы предлагают именовать эту волну волной Лэмба-Стоунли. Примерно такое же определение волны дается в работе [24], в которой низкочастотная волна поименована волной Лэмба. Отметим лишь, что в первоисточниках, давшим им эти названия, волны Лэмба и Стоунли имеют совершенно разную физическую основу (нормальная и поверхностные волны соответственно), а волна Лэмба охарактеризована как присущая только твердым телам ограниченных размеров (стержень, пластина) со свободными поверхностями.

Различия, проявляющиеся в идентификации упругих волн и их наименованиях, - не риторические. Каждая волна обладает определенной информативностью, поэтому для решения с использованием её характеристик обратных (геологических) задач волну необходимо предварительно идентифицировать. Одни волны распространяются без дисперсии скорости; для других проявляется то или иное значение дисперсии. Отсутствие или наличие дисперсии должно предусматривать разные алгоритмы определения искомых геологических величин - с учетом разнообразных поправок или без них. Затрудняется также само понимание существа решаемых задач. Например, первые практические результаты выделения проницаемых разностей пород с применением параметров волны Стоунли были получены российскими исследователями [2, 57]. Однако сама волна была поименована авторами как волна Лэмба. Это переименование внесло определённое непонимание позиций авторов и надолго замедлило применение полученных ими научных результатов.

Горные породы, вскрытые скважиной, представляют собой сложную среду, упругие свойства которой должны быть изучены посредством АК. В открытой скважине следует рассматривать распространение волн в самих породах (околоскважинном пространстве), в скважинной жидкости и вдоль границы скважинкой жидкости с горными породами. В обсаженной скважине к перечисленным компонентам среды добавляются обсадная колонна и цементное кольцо. Незацементированные участки обсадной колонны представляют собой волновод с относительно свободными границами, в котором распространяются нормальные волны. Наоборот, зацементированная колонна, поверхность которой жестко связана с цементным камнем и стенкой скважины, является, с точки зрения физики распространения упругих волн, лишь тонким слоем на поверхности горных пород (стенки скважины). Условия распространения упругих волн в колонне и цементном камне очень далеки от условий волновода и приближаются в зависимости от толщин колонны и цементного кольца к условиям околоскважинного пространства [14, 74].

В неограниченной твёрдой среде (породе) распространяются 2 типа волн: продольная Р и поперечная S ( табл.1 ). Их природа определяется колебаниями частиц среды относительно направления распространения волны. В продольной волне частицы колеблются в направлении распространения волны, в поперечной - перпендикулярно ему. Так как плоскость, перпендикулярная направлению распространения волны, имеет 2 координаты, то поперечная волна может быть поляризована двояко. Поляризуемость волны проявляется в анизотропных средах. Например, в трещиноватых породах скорость распространения волны и её интенсивность больше вдоль преобладающей системы трещин (трещины гидроразрыва) и меньше в направлении, перпендикулярном трещиноватости. Продольная и поперечная волны распространяются в однородной среде без дисперсии скорости; их групповые скорости равны фазовым.

В условиях скважинных измерений, когда простейший измерительный зонд АК представляет собой разнесенные на некоторое расстояние и удаленные от стенки скважины излучатель И и приемник П упругих колебаний, эти волны представлены головными Р и S волнами ( рис. 1 ). Последние распространяются как волна сжатия в жидкости, заполняющей скважину, а в горной породе - вдоль стенки скважины в виде Р и S волн. Углы преломления обеих волн в горную породу определяются законом Снеллиуса:

где iЖ, ip,s - углы падения волны сжатия в жидкости и преломления Р и S волн в твердом теле; vж , vp , vs - скорости упругой волны в жидкости, заполняющей скважину, продольной и поперечной волн в твёрдом теле. Продольная и поперечная волны распространяются вдоль стенки скважины, если угол ip или is равен 90°. Головные волны обладают всеми характеристиками, что и Р и S волны в неограниченной среде.

Во временном интервале, принадлежащем "псевдорэлеевским" волнам, принципиально возможно существование трёх типов поверхностных волн: Рэлея, Стоунли и Лява ( табл. 1 ). Из них наиболее изучена и известна волна Рэлея, обладающая вертикальной поляризацией. Под вертикальной поляризацией в физике упругих волн подразумевается, что вектор колебательного смещения частиц среды в волне расположен в плоскости, перпендикулярной к граничной поверхности, т.е. к стенке скважины (в физических моделях граничная поверхность расположена горизонтально). Волна Рэлея распространяется вдоль границы твердого тела с разреженным пространством (вакуумом, газом). Энергия волны Рэлея локализована в поверхностном слое твердого тела (породы) толщиной около одной длины волны l. Волной Рэлея называют также волну, распространяющуюся вдоль границы твердого тела с жидкостью. В последнем случае она непрерывно излучает энергию в жидкость, образуя в ней неоднородную поверхностную волну. Затухание этой волны велико, и она практически не регистрируется на базах измерения АК. Скорость распространения vr волны Рэлея определяется преимущественно скоростью поперечной волны в твёрдом теле (vR~0,9 vs).

Волна Стоунли также является волной с вертикальной поляризацией, но имеет иную, по сравнению с волной Рэлея, форму колебаний. Она состоит из слабо неоднородной волны в жидкости, амплитуды которой медленно убывают при удалении от границы, и двух (продольной и поперечной) сильно неоднородных волн в твёрдом теле. По этой причине энергия волны и движение частиц локализованы, в основном, в жидкости. Скорость волны меньше скоростей распространения упругих волн в обеих средах, то есть vst < vp,vs,vж ( рис. 1 , б, г). В отечественной литературе волну Стоунли часто именуют волной Лэмба-Стоунли [5, 63] ( рис. 1 , б) или даже волной Лэмба [2, 35, 57].

Волна Лява с горизонтальной поляризацией распространяется вдоль границы твёрдого полупространства с твёрдым слоем (аналог - обсаженная скважина с хорошо зацементированной колонной). Она представляет собой чисто сдвиговую волну и обладает дисперсией скорости. Если толщина слоя стремится к нулю, скорость волны стремится к скорости vs поперечной волны в неограниченном пространстве, а волна преобразуется в обычную объемную S волну. В диапазоне частот 5-30 кГц, используемом в АК, в обсаженной скважине с зацементированной колонной фактически регистрируются неискаженные значения vs

Все три типа поверхностных волн регистрируются в скважине не одновременно вследствие разных условий их образования, затухания и чувствительности к ним приёмных элементов.

В жидкости, заполняющей скважину, упругая волна может распространяться в пределах измерительного зонда в кольцевом зазоре между стенкой скважины и скважинным прибором. Если рассматривать саму скважину и этот кольцевой зазор как столб жидкости или газа с жёсткими стенками, диаметр которого меньше длины волны, то в нём должна была бы формироваться плоская волна (гидроволна), такая же, как в неограниченном пространстве ( рис. 1 , б). Реально же при увеличении отношения длины волны l к толщине зазора (l/Dd>l) гидроволна вырождается. Как будет показано ниже, её интенсивность существенно меньше, чем это обычно представляется. Временной интервал, в котором ожидается появление гидроволны, заполнен преимущественно колебаниями интенсивной волны Стоунли.

В обсаженной скважине интервалы свободной незацементированной колонны представляют собой упругий волновод со свободными границами, в котором распростаняются нормальные волны - продольные (волны Лэмба в классическом их понимании) и поперечная. При малой толщине колонны, когда wh/vs<<l, что всегда выполняется в скважине на частотах АК, в колонне возможно распространение только нормальных волн нулевого порядка: двух волн Лэмба и одной поперечной волны. Симметричная продольная волна Лэмба соответствует Р волне в неограниченном пространстве. В ней преобладает продольная компонента смещения, и только потому, что поверхности колонны свободные, появляется небольшое поперечное смещение, которое в vs/wh раз меньше продольного. Фазовая скорость этой волны несколько меньше скорости Р волны в неограниченном пространстве и равна примерно 5350-5400 м/с ( рис. 1 , рис. 2 ). Собственно это волна, которая в акустической цементометрии носит наименование "волны по колонне".

Антисимметричная волна Лэмба представляет собой изгибную волну, которая обладает ярко выраженной дисперсией скорости. При реальных соотношениях толщины колонны и длин упругих волн скорость распространения изгибной волны составляет несколько сотен метров в секунду. Затухание волны велико, и она не регистрируется приборами АК.

Нормальная поперечная волна нулевого порядка является симметричной; деформация частиц представляет чистый сдвиг; фазовая и групповая скорости равны vs, т.е. это такая же сдвиговая волна, как в неограниченном пространстве. Затухание волны велико. Её удаётся регистрировать с помощью измерительных зондов, оснащенных дипольными преобразователями, на относительно высокой частоте - более 8 кГц.

В скважине с зацементированной обсадной колонной распространяются те же типы волн, что и в открытом стволе. Обсадная колонна и цементное кольцо представляют собой два тонких слоя на поверхности стенки скважины (горных пород), толщины которых много меньше длин Р и S волн.

В табл. 1 приведены сведения об упругих волнах, распространяющихся в тонком (wd<<vs) жестком стержне со свободными границами. Хотя в условиях скважины такие волны отсутствуют, общность их природы с волнами, распространяющимися в тонкой пластине (колонне), облегчает понимание сущности продольной волны Лэмба, распространяющейся в незацементированной обсадной колонне.

Из множества волн, которые могут распространяться в скважине и околоскважинном пространстве, в практике ГИС выделяется небольшое количество, для которых установлены определённые взаимосвязи между измеряемыми параметрами волн (Dt, А, a) и искомыми характеристиками пород или обсадной колонны. Это продольная и поперечная волны и волна Стоунли, параметры которых применяют для изучения разрезов скважин. Кроме того, на измерениях интервального времени Dt и амплитуд отраженной продольной волны основано сканирование стенок скважины в открытых и обсаженных скважинах. Оценку качества цементирования обсадных колонн выполняют с использованием параметров (Dt, А, a) волны Лэмба, распространяющейся в обсадной колонне. Чтобы выделить эти типы волн из множества других, их называют иногда информативными волнами [14], отнюдь не отрицая, что со временем таковыми могут стать и любые другие типы волн.

Идентификация информативных и других волн в зарегистрированном волновом пакете представляет собой сложную задачу, если учесть близкие значения скоростей распространения и частот многих волн - продольной волны в породе и волны Лэмба в обсадной колонне, поперечной и Рэлея, гидроволны и Стоунли и др. В лабораторных условиях эту задачу решают построением годографов упругих волн на специально построенных моделях, при изучении которых годографы разных типов волн резко расходятся или приобретают разную форму. Например, разделение годографов S и R волн достигается при переходе приёмника через ребро модели, когда путь распространения S волны (диагональ) существенно уменьшается по сравнению с путём R волны (два катета) [20].

Для идентификации упругих волн в волновых пакетах АК в настоящее время разработана одна методика - оценка когерентности волновых пакетов и их частей, зарегистрированных с помощью многоэлементных [6, 71, 90] либо простейших трёхэлементных зондов [34]. В обоих случаях определяются коэффициенты корреляции (множественной или парной) волновых пакетов, зарегистрированных многими или только двумя приёмниками. Технически это достигается выбором небольшого (1-1,5 периода колебаний) интервала в волновом пакете первого приёмника и определением коэффициента его корреляции с колебаниями в равных по длине временных интервалах в волновом пакете второго приёмника (последующих приёмников для многоэлементного зонда), после чего в первом пакете коррелируемый интервал сдвигается на шаг дискретизации и т.д. Положения локальных максимумов коэффициентов корреляции на графике "Dt-t" соответствуют интервальным временам распространения волн по оси Dt и временным интервалам существования этих волн по оси t ( рис. 2 ). Постоянные значения Dt во временном интервале существования волны свидетельствуют о распространении волны без дисперсии или о том, что величина дисперсии меньше погрешности определения Dt.

Полученный набор максимумов подвергается процедуре отбраковки, основанной на кинематической связи между Dt, t и длиной l измерительного зонда. Отбрасываются максимумы, для которых tp,s,st<Dtp,s,st l+100 мкс, где постоянный член 100 мкс приближённо учитывает время распространения волны в скважинной жидкости. Прямая, отображающая это неравенство, ограничивает информационное поле слева. Его можно ограничить также справа, если допустить, что при импульсном режиме измерений колебания каждой волны, не искажённые интерференцией, длятся в пределах 3-4 периодов. Затем проводится идентификация оставшихся максимумов с учетом априорной информации об объекте исследования. Вначале определяется наличие или отсутствие максимума, соответствующего волне Лэмба в обсадной колонне; значение DtL должно находиться в диапазоне 183-187 мкс/м. В открытом стволе максимум с минимальным значением At принадлежит продольной Р волне (Dtp), обладающей максимальными значениями скорости распространения. Локальный максимум, для которого значение Dt находится в диапазоне(1,7-2,1)Dtр, идентифицируется принадлежащим поперечной волне (Dts). Для монопольных преобразователей значение Dts не может быть большим 660 мкс/м - значения интервального времени в скважинной жидкости (Dtж). О том, что этот максимум принадлежит именно поперечной волне, а не волне Рэлея, свидетельствует равенство значений Dts, измеренных зондами с монопольными и дипольными преобразователями [25,139]. И, наконец, определение максимума, который соответствует волне Стоунли, не вызывает затруднений, так как его локализация заранее известна (Dtst> Dtp, Dts, DtЖ).

Как показывает опыт обработки материалов трёхэлементных [34] и многоэлементных [71] зондов, в геометрии наблюдений, присущей АК, возможна регистрация весьма ограниченного количества волн Как правило, это информативные волны - Лэмба, продольная, поперечная, Стоунли. В волновых пакетах отсутствует волна Рэлея, распространяющаяся в скважине в виде сильно неоднородной волны. Интенсивность прямой гидроволны, распространяющейся в скважинной жидкости, намного меньше интенсивности волны Стоунли, а временной интервал её существования незначителен (менее одного периода), и её не удаётся выделить в волновом пакете.



2019-12-29 308 Обсуждений (0)
УПРУГИЕ ВОЛНЫ, РАСПРОСТРАНЯЮЩИЕСЯ В СКВАЖИНЕ И ОКОЛОСКВАЖИННОМ ПРОСТРАНСТВЕ. ИНФОРМАТИВНЫЕ ВОЛНЫ 0.00 из 5.00 0 оценок









Обсуждение в статье: УПРУГИЕ ВОЛНЫ, РАСПРОСТРАНЯЮЩИЕСЯ В СКВАЖИНЕ И ОКОЛОСКВАЖИННОМ ПРОСТРАНСТВЕ. ИНФОРМАТИВНЫЕ ВОЛНЫ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (308)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.015 сек.)