Мегаобучалка Главная | О нас | Обратная связь


Обсуждение результатов исследования



2019-12-29 188 Обсуждений (0)
Обсуждение результатов исследования 0.00 из 5.00 0 оценок




Известно, что прочность и вязкость снижаются в результате излишне высокого нагрева под закалку. Это ухудшение свойств – следствие роста зерна с повышением температуры, что является следствием стремления системы к уменьшению свободной энергии. При небольшом перегреве присутствующие в стали карбиды препятствуют росту зерна и заметному ухудшению свойств. Однако при высоких температурах закалки карбидная фаза растворяется в аустените, что снимает препятствия для роста зерна. Чувствительность к перегреву выявляется по величине зерна аустенита, получаемого после нагрева до разных температур. [1]

В штамповой стали 4Х5МФ1С величина зерна определяет прежде всего пластические свойства, ухудшение которых недопустимо для инструмента, так как ведет к образованию трещин и разрушению при эксплуатации. Таким образом, определение размера зерна после того или иного режима термообработки является практически важной задачей.

В настоящей работе была изучена зависимость размера аустенитного зерна от температуры нагрева под закалку. Так как с увеличением температуры аустенитное зерно растет (снижается вязкость стали), то согласно ГОСТ 5950–2000 для стали 4Х5МФ1С размер аустенитного зерна не должен превышать 8 балла. Исследования показали, что при температуре закалки 1 100°C обеспечивается достаточно мелкое зерно, соответствующее 8 баллу, что допустимо. Однако более предпочтительной для закалки является температура 1 070оС, так как в этом случае исключается возможность перегрева стали (балл аустенитного зерна 9).

Величина действительного зерна аустенита в конечном итоге определяет дисперсность мартенсита. В данной работе была изучена микроструктура стали после закалки на различные температуры (рис. 12). Выяснено, что штамповая сталь 4Х5МФ1С после закалки имеет структуру, состоящую из мартенсита, аустенита остаточного и карбидов, причем количество карбидной фазы уменьшается с ростом температуры закалки (рис. 15). Форма и размер включений также меняются. Если при закалке на 950оС в структуре наряду с вытянутыми включениями цементитного типа присутствуют карбиды округлой формы (специальные), то при более высоком нагреве цементитный карбид, не обладающий достаточной теплостойкостью, а также мелкие карбиды других типов, полностью растворяются в аустените. В результате этого средний размер включения растет вплоть до 1 070оС, когда начинают растворяться более крупные карбиды. Количество аустенита остаточного в комплекснолегированных сталях после закалки колеблется в пределах 15–30%. Кристаллы мартенсита в исследуемой стали имеют вытянутое (реечное) строение; дисперсность структуры падает при увеличении температуры нагрева под закалку [4].

Твердость является важнейшим свойством инструментальной стали. Инструменты с недостаточной твердостью не могут резать; под действием возникающих напряжений они быстро теряют форму и размеры. С увеличением твердости в большинстве случаев возрастает и износостойкость. [1]

Так как, инструментальная сталь должна обладать высокой прочностью, твердостью, износостойкостью, то в работе была изучена зависимость твердости стали 4Х5МФ1С от температуры закалки. Было выяснено, что при повышении температуры закалки с 950 до 1 100оС объемная доля карбидов уменьшается от 17,3 до 3,3% за счет их растворения в аустените (табл. 13), который насыщается легирующими элементами, что способствует увеличению твердости вплоть до 54 HRC (рис. 13). Однако твердость мартенсита определяет общую твердость стали главным образом в закаленном состоянии. В процессе высокого отпуска происходит распад мартенсита, и твердость стали зависит от выделяющихся карбидов.

В ремонтных цехах и на малых предприятиях чаще всего нагрев под закалку проводится в окислительной среде, поэтому важно знать глубину обезуглероженного слоя, который необходимо удалять. В работе были использованы методы оценки обезуглероживания по изменению твердости и микротвердости в сечении образца. Результаты исследования показали, что глубина обезуглероженного слоя при температуре нагрева под закалку 1 070°C достигает 0,16 мм, а при 1 100°C – 0,18 мм, что гораздо меньше припуска, который дается на производстве на обезуглероженный слой.

В результате термической обработки существенно изменяются свойства стали, особенно механические свойства. Закалка при нагреве на высокие температуры проводится для растворения значительной части карбидов и получения высоколегированного мартенсита, в результате чего обеспечивается высокая твердость. Последующий отпуск на температуры 500–600°C вызывает дополнительное упрочнение. При указанных температурах возрастает диффузионная подвижность карбидообразующих элементов, что приводит к изменению химического состава мартенсита, увеличению содержания карбидов и эффекту упрочнения. Причина вторичного твердения – замена растворяющихся сравнительно грубых частиц цементита значительно более дисперсными выделениями специального карбида (V4С3, Мо2С и др.). В молибденовых сталях в последовательности карбидных превращений Fе3С → Ме2С + Ме23С6 → Ме6С максимум вторичного твердения соответствует стадии выделения дисперсных частиц Ме2С и Ме23С6. В работе было выявлено, что дисперсионное твердение стали 4Х5МФ1С происходит при температурах порядка 530–570оС (рис. 14). Одновременно с увеличением твердости возрастает и износостойкость, достигая максимального значения при отпуске на 600оС (рис. 38). Наряду с отмеченными выше процессами при отпуске происходит распад остаточного аустенита. Он протекает при 480–580оС, как правило, изотермически, заканчивается полностью и не оказывает влияния на работоспособность материала [4]. В результате превращения остаточного аустенита немного повышается твердость, но его влияние незаметно на фоне вторичного твердения.

В настоящей работе также было проведено исследование износостойкости покрытий из нитрида и оксинитрида титана, нанесенных на сталь 4Х5МФ1С. Установлено, что покрытие из нитрида титана подвергается износу почти в три раза меньшему, чем поверхность исходной стали при одинаковых условиях эксперимента. Таким образом, открывается возможность увеличения износостойкости материала за счет нанесения покрытий методом ионно-плазменной имплантации (п. 2.2.6).

1. Исследовано влияние температуры закалки и отпуска на изменение твердости стали 4Х5МФ1С. Показано, что сталь данной марки склонна к вторичному твердению при температурах порядка 550оС.

2. Изучено влияние температуры закалки на глубину обезуглероженного слоя и показано, что с увеличением температуры нагрева увеличивается глубина обезуглероживания до 0,2 мм при 1 100оС.

3. Разработана методика выявления аустенитного зерна и определена его величина в зависимости от температуры закалки.

4. Изучено влияние температуры отпуска на износостойкость данной стали. Выявлена оптимальная температура отпуска, соответствующая максимальной износостойкости. Изучена износостойкость покрытий из нитрида и оксинитрида титана, нанесенных на образцы с помощью ионно-плазменной имплантации.

5. Проведено электронное микроскопическое исследование структуры закаленной стали. Показано, что с увеличением температуры закалки с 950 до 1 100оС объемная доля карбидной фазы в структуре уменьшается за счет ее более полного растворения в аустените.




2019-12-29 188 Обсуждений (0)
Обсуждение результатов исследования 0.00 из 5.00 0 оценок









Обсуждение в статье: Обсуждение результатов исследования

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (188)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)