Мегаобучалка Главная | О нас | Обратная связь


G. 1.8 Обзор информационных систем обучения



2019-12-29 186 Обсуждений (0)
G. 1.8 Обзор информационных систем обучения 0.00 из 5.00 0 оценок




 

Систематические исследования в области компьютерной поддержки процесса обучения имеют более чем 30–летнюю историю. За этот период в США, Канаде, Англии, Франции, Японии, России и ряде других стран было разработано большое количество компьютерных систем учебного назначения, ориентированных на различные типы ЭВМ

Сферы применения компьютерных средств поддержки процесса обучения гораздо шире, чем только учебные заведения. Это крупные промышленные предприятия, военные и гражданские организации, ведущие самостоятельную подготовку и переподготовку кадров. Кроме того, в цивилизованных странах становится уже стандартом снабжать новые сложные машины и технологии компьютерными обучающими системами, облегчающими и ускоряющими процесс их освоения и внедрения. За рубежом разработку "мягкого" компьютерного продукта учебного назначения (методических и программно–информационных средств) считают весьма дорогостоящим делом в силу его высокой наукоемкости и необходимости совместной работы высококвалифицированных специалистов: психологов, преподавателей-предметников, компьютерных дизайнеров. Несмотря на это, многие зарубежные крупные фирмы финансируют проекты создания компьютерных учебных систем в учебных заведениях и ведут собственные разработки в этой области.

В методологическом плане разработка и использование компьютерных средств поддержки обучения, в первую очередь – "мягкого" продукта, с самого начала развивались по двум направлениям, слабо связанным между собой. Первое направление опирается в своей основе на идеи программированного обучения. В его рамках разрабатываются и эксплуатируются автоматизированные обучающие системы (АОС) по различным учебным дисциплинам. Ядром АОС являются так называемые авторские системы, позволяющие преподавателю–разработчику вводить свой учебный материал в базу данных и программировать с помощью специальных авторских языков или других средств алгоритмы его изучения. Характерными представителями АОС, построенных на алгоритмах программированного обучения, длительное время являлись: за рубежом система PLATO, в нашей стране семейство АОС ВУЗ. С начала 90–х годов в России и странах СНГ распространяются инструментальные среды для создания компьютерных курсов на ПЭВМ типа IBM PC зарубежного (Private Tutor, LinkWay, Costoc) и отечественного производства: АДОНИС, АСОК, УРОК и др.

Второе направление компьютеризации обучения является как бы вторичным приложением "мягкого" продукта компьютеризации различных отраслей человеческой деятельности (науки, техники, экономики и др.). Это отдельные программы, пакеты программ, элементы автоматизированных систем (АСУ, САПР, АСНИ, АСУП и др.), предназначенные для автоматизации трудоемких расчетов, оптимизации, исследования свойств объектов и процессов на математических моделях и т.п. Применение таких программных систем в учебном процессе носит более массовый характер, чем использование универсальных АОС, как в нашей стране, так и за рубежом, но, в силу своей разобщенности в содержательном плане и отсутствия единой дидактической платформы, менее известно, систематизировано и обобщено в научно–методической литературе. Среди многочисленных работ в нашей стране по адаптации отраслевых программных разработок для целей обучения определенной системностью и попытками дидактических и технических обобщений выделяются работы по созданию учебно–исследовательских САПР и АСНИ.

С начала 80-х годов интенсивно развивается новое направление в компьютеризации обучения – интеллектуальные обучающие системы (ИОС), основанные на работах в области искусственного интеллекта. Существенной частью ИОС являются модели обучаемого, процесса обучения, предметной области, на основе которых для каждого обучаемого может строиться рациональная стратегия обучения. Базы знаний ИОС могут содержать наряду с формализованными знаниями экспертные знания в предметных областях и в сфере обучения.

"Персональная революция" 80-х гг. принесла в сферу обучения не только новые технические, но и дидактические возможности. Это доступность ПЭВМ, простота диалогового общения и, конечно же, графика. Применение графических иллюстраций в учебных компьютерных системах позволяет не только увеличить скорость передачи информации обучаемому и повысить уровень ее понимания, но и способствует развитию таких важных для специалиста любой отрасли качеств, как интуиция, профессиональное "чутье", образное мышление. А на рынке компьютерных технологий появляются еще более перспективные для целей профессиональной подготовки технические и программные новинки. Это оптические внешние запоминающие устройства на компакт-дисках CD-ROM (Compact Disk Read Only Memory) с большими объемами памяти (сотни мегабайт), инструментальные программные средства гипертекста, мульти – и гипермедиа, системы "виртуальной реальности".

Компьютер, снабженный техническими средствами мультимедиа, позволяет широко использовать дидактические возможности графики и звука. С помощью систем гипертекста можно создавать перекрестные ссылки в массивах текстовой информации, что облегчает поиск нужной информации по ключевым словам, выделенным в тексте. Системы гипермедиа позволяют связать друг с другом не только фрагменты текста, но и графику, оцифрованную речь, звукозаписи, фотографии, мультфильмы, видеоклипы и т.п.

Использование таких систем позволяет создавать и широко тиражировать на лазерных компакт-дисках "электронные" руководства, справочники, книги, энциклопедии.

Развитие информационных телекоммуникационных сетей дает новый импульс системам дистанционного обучения, обеспечивает доступ к гигантским объемам информации, хранящимся в различных уголках нашей планеты.

Новые аппаратные и программные средства, наращивающие возможности компьютера, переход в разряд анахронизма понимания его роли как вычислителя постепенно привели к вытеснению термина "компьютерные технологии" термином "информационные технологии". Под этим термином понимают процессы накопления, обработки, представления и использования информации с помощью электронных средств. Так, суть информатизации образования определяют как создание условий учащимся для свободного доступа к большим объемам активной информации в базах данных, базах знаний, электронных архивах, справочниках, энциклопедиях.

Следуя этой терминологии, можно определить информационные технологии обучения (ИТО) как совокупность электронных средств и способов их функционирования, используемых для реализации обучающей деятельности. В состав электронных средств входят аппаратные, программные и информационные компоненты, способы применения которых указываются в методическом обеспечении ИТО.

Впечатляющий прогресс в развитии аппаратных и инструментальных программных средств ИТО предоставляет хорошие технические возможности для реализации различных дидактических идей. Однако, как показывает анализ отечественных и зарубежных компьютерных систем учебного назначения, ряд из них по своим дидактическим характеристикам нельзя назвать даже удовлетворительными. Дело в том, что уровень качества "мягкого" продукта учебного назначения закладывается на этапе его проектирования при подготовке учебного материала для наполнения баз данных АОС и электронных учебников, при создании сценариев учебной работы с компьютерными системами моделирующего типа, при разработке задач и упражнений и т.п.

К сожалению, методические аспекты ИТО отстают от развития технических средств. Да это и неудивительно, поскольку в методическом плане ИТО интегрируют знания таких разнородных наук, как психология, педагогика, математика, кибернетика, информатика. Разработка средств ИТО для поддержки профессионального образования осложняется еще и необходимостью хорошо знать содержание предметной области и учитывать присущую ей специфику обучения. Именно отставание в разработке методологических проблем, "нетехнологичность" имеющихся методик являются одними из основных причин разрыва между потенциальными и реальными возможностями ИТО.

Теперь рассмотрим некоторые примеры информационных систем обучения и попытаемся выяснить наиболее актуальные технологии построения ИСО на сегодняшний день.

Сначала рассмотрим методические аспекты технологии создания "мягкого" продукта учебного назначения, положенные в основу системы Комплексов Автоматизированных ДИдактических Средств (системы КАДИС), разработанной и развиваемой в центре новых информационных технологий при Самарском государственном аэрокосмическом университете (СГАУ).

В комплексе обобщаются опыт и результаты многолетних исследований по компьютерной поддержке инженерной подготовки. Эти исследования были начаты в конце 70-х гг. на кафедре конструкции и проектирования летательных аппаратов СГАУ.

Одна из первых версий инструментальной среды получила название системы автоматизированного проектирования автоматизированных учебных курсов (САПР АУК). В дальнейшем, несмотря на расширение ее функций от разработки АУК до подготовки целостных комплексов, включающих набор АУК, тренажеров, учебных ППП, это название было сохранено.

В состав САПР АУК входят следующие компоненты: учебное пособие, АУК для освоения и закрепления методики проектирования учебных комплексов, программные средства, информационное обеспечение.

Информационное обеспечение САПР АУК включает базы данных двух типов: базы данных с учебным материалом и журнал. Учебный материал содержит для каждого АУК блоки информации, упражнения, словарь терминов и понятий с их синонимами и определениями, условия вызова подключаемых программ (тренажеров, учебных ППП и т.п.). В журнале накапливается статистика по работе учащихся со всеми АУК.

Программные средства САПР АУК реализуют четыре вида интерфейсов: учащихся, преподавателей–пользователей и преподавателей–разработчиков учебных комплексов, администратора САПР АУК. Структурно все программы также можно разделить на четыре основные части: "проигрыватель" учебных комплексов, обеспечивающий работу учащихся и преподавателей-пользователей; инструментальную оболочку, позволяющую преподавателям-разработчикам наполнять базу данных учебных комплексов; набор программных утилит, реализующих некоторые дополнительные функции в работе преподавателей–разработчиков; утилиты администратора САПР АУК.

Томский Государственный университет является разработчиком очень многих интересных систем обучения. В том числе одна из достаточно интересных и простых разработок – Виртуальный университет. Первые версии информационной системы обучения являлись «локальными» и похожими на нашу систему.

На сегодняшний день наиболее востребованными и эффективными информационными системами обучения являются “сетевые” системы управления обучением (LMS) и системы управления содержимым обучения (LCMS).

Вслед за развитием систем управления сайтом (CMS – Content Management System), стали появляться специализированные системы, в частности для управления обучением.

В англоязычной литературе можно встретить следующую аббревиатуру систем управления обучением:

· LMS – Learning Management System (система управления обучением);

· CMS – Course Management System (система управления курсами);

· LCMS – Learning Content Management System (система управления учебным материалом);

· MLE – Managed Learning Environment (оболочка для управления обучением);

· LSS – Learning Support System (система поддержки обучения);

· LP – Learning Platform (образовательная платформа);

· VLE – Virtual Learning Environments (виртуальные среды обучения).

Основным фундаментом электронного обучения обычно являются системы LMS и LCMS. LMS предполагает автоматизацию административного управления учебным процессом, а LCMS – автоматизацию управления содержимым (контентом) учебного процесса, хотя на практике границы между этими системами весьма относительны.

Обе системы управляют содержанием курсов и отслеживают результаты обучения. Оба инструмента могут управлять и отслеживать контент, вплоть до уровня учебных объектов. Но система управления обучением, в то же время, может управлять процессом смешанного обучения, составленного из онлайнового контента, мероприятий в учебных классах, встреч в виртуальных учебных классах и т.п. В противовес этому, система управления учебным контентом может руководить содержимым на уровень ниже учебного объекта, что позволяет перестраивать и перенаправлять онлайн-контент. Некоторые LCMS умеют динамически строить учебные объекты в соответствии с профилями пользователей или стилями обучения.

Таким образом, система управления обучением обеспечивает инфраструктуру, позволяющую любому образовательному учреждению планировать, проводить и управлять учебными программами любых форматов на выбор. Она также поддерживает многочисленные средства разработки курсов и легко интегрируется с популярными системами управления содержимым обучения. В этой роли, как катализатор общей учебной среды, LMS может интегрировать в LCMS учебные объекты через технические спецификации и стандарты, а также нести ответственность за управление учебным контентом, включая проигрывание и проверки, хранение контент–репозитория, соединение и разъединение объектов контента, внедрение объектов контента в смешанные процессы, сбор результатов обучения по отдельным курсам.

В недавнем прошлом все электронные обучающие ресурсы создавались с использованием специфичных инструментальных средств, требующих свою среду разработки и функционирования. Разработчики курсов или должны были изучить эти инструментальные средства, или работать с программистами, имеющими опыт работы с ними. Содержимое разрабатывалось заново от курса к курсу и требовалось много сил на разработку и испытания курса.

Learning Content Management System отделяет контент от средств доставки контента. Содержимое может быть создано однократно и доставлено многочисленными способами. LCMS также устраняет потребность в специализированных навыках программирования, поскольку позволяет авторам вставлять содержание в предварительно запрограммированные шаблоны. Поскольку контент создается в виде небольших объектов, разработчики могут повторно использовать содержимое, созданное другими авторами, экономя при этом время на разработку, а также обеспечивая доставку непротиворечивой информации обучающимся.

Таким образом, в связи с бурным ростом объёма информации, интенсивности ее потока возникают трудности в усвоении материала, подготовке учебных и методических материалов. Для устранения вышеизложенных недостатков необходим совершенно новый подход, стиль и новая методика, основанная на использования самых современных информационно-педагогических технологий, где значительный упор делается на возможности современных информационных систем и телекоммуникаций.

Новый подход организации учебного процесса, установления контакта между преподавателем и студентом состоит в том, что преподаватель теперь все в большей степени выполняет функцию координатора. У преподавателя появляется возможность введения коррекции на отклонение от идеальной траектории перехода с одного этапа в следующий. Расширяются возможности обучаемого, т.е. теперь у него появляется возможность войти и в мир знаний преподавателя, воспользоваться базой знаний, виртуальными библиотеками, установить контакт с виртуальными преподавателями, а также произвести объективную самооценку формируемых знаний.

Рассмотрим наиболее популярные LMS на сегодняшний момент:

MOODLE – Modular Object–Oriented Dynamic Learning Environment.

· Официальный сайт: www.moodle.org

· Поддержка: IMS/SCORM спецификаций

· Платформа: PHP, MySQL, PostgreSQL

· Лицензия: GNU General Public License (GPL)

· Поддержка русского языка: есть

Дизайн и разработка Moodle направляются особой философией обучения, которую можно вкратце назвать "педагогика социального конструкционизма" (social constructionist pedagogy).

Конструкционизм утверждает, что обучение особенно эффективно, когда учащийся в процессе обучения формирует что–то для других. Это может быть что угодно, от высказывания утверждения или написания сообщения в интернет до более комплексных произведений, таких как картина, дом или пакет программ.

Например, вы можете прочесть эту страницу несколько раз, и всё равно на завтра ничего не помнить. Но если вы попытаетесь объяснить эти идеи кому–нибудь другому своими словами или изготовить слайд–презентацию, объясняющую эти концепции, Вы лучше поймёте их и лучше интегрируете в свои собственные идеи. Вот почему люди делают конспекты во время лекций, даже если никогда не читают их потом.

Claroline

· Официальный сайт: www.claroline.net

· Поддержка: IMS/SCORM спецификаций

· Языки приложения: PHP, JAVA

· СУБД: MySQL

· Лицензия: GNU General Public License (GPL)

· Поддержка русского языка: есть

· Демонстрационный сайт: http://demo.opensourcecms.com/claroline/

Приложение было создано в Бельгии институте педагогики и мультимедиа католического университета в Лувене.

Dokeos

Платформа построения сайтов дистанционного обучения, основанная на ветке (fork) Claroline. Ветка представляет собой клон свободно распространяемого программного продукта, созданный с целью изменить приложение-оригинал в том или ином направлении.

Dokeos – результат работы некоторых членов первоначальной команды разработчиков Claroline, которые задумали:

· изменить ориентацию приложения. Теперь оно подойдет скорее организациям, чем университетам.

· организовать (скорее выставить на продажу) набор дополнительных сервисов для платформы. Название Dokeos относится как к приложению, так и к сообществу, которое предлагает набор различных сервисов к платформе: хостинг, интегрирование контента, разработка дополнительных модулей, тех. поддержка и т.д.

Dokeos бесплатен поскольку лицензия Claroline (GNU/GPL) предполагает, что ветки подпадают под ту же лицензию. Поскольку ветка была выделена недавно, оба приложения сейчас относительно похожи друг на друга, хотя некоторые различия в эргономике, построении интерфейса, функционале уже начинают проявляться.

ATutor

Система создана канадскими разработчиками. Включает в себя весь необходимый e–learning инструментарий. Есть русскоязычная версия.

· Официальный сайт: www.atutor.ca

· Поддержка: IMS/SCORM

· Языки приложения: PHP, JAVA

· СУБД: MySQL

· Лицензия: GNU General Public License (GPL)

· Поддержка русского языка: есть

· Демонстрационный сайт: http://www.atutor.ca/atutor/demo/login.php

LAMS

· Официальный сайт: http://www.lamscommunity.org

· Языки приложения: Java

· СУБД: MySQL

· Лицензия: GNU General Public License (GPL)

· Поддержка русского языка: нет

· Демонстрационный сайт: http://lamsinternational.com/demo/intro_to_lams.html

Спецификация IMS Learning Design была подготовлена в 2003 году. В ее основу положены результаты работы Открытого университета Нидерландов (Open University of the Netherlands – OUNL) по языку образовательного моделирования «Educational Modelling Language» (EML), при помощи которого описывается «метамодель» разработки учебного процесса.

На основе данной спецификации была создана «Система управления последовательностью учебных действий» Learning Activity Management System (LAMS). LAMS предоставляет преподавателям визуальные средства для разработки структуры учебного процесса, позволяющие задавать последовательность видов учебной деятельности.

LAMS представляет собой революционно новое приложение для создания и управления электронными образовательными ресурсами. Она предоставляет преподавателю интуитивно понятный интерфейс для создания образовательного контента, который может включать в себя различные индивидуальные задания, задания для групповой работы и фронтальную работу с группой обучаемых.

OLAT

· Официальный сайт: http://www.olat.org

· Стандарты: SCORM/IMS (IMS Content Packaging, IMS QTI)

· Языки приложения: Java

· СУБД: MySQL, PostgreSQL

· Лицензия: GNU General Public License (GPL)

· Поддержка русского языка: есть

· Демонстрационный сайт: http://demo.olat.org

Разработка системы началась еще в 1999 году в University of Zurich, Switzerland, где она является основной образовательной платформой электронного обучения.

OpenACS

Open Architecture Community System это система для разработки масштабируемых, переносимых образовательных ресурсов. Она является основой для многих компаний и университетов, занимающихся использованием технологий электронного обучения.

· Официальный сайт: http://openacs.org

· СУБД: ORACLE

· Лицензия: GNU General Public License (GPL)

· Поддержка русского языка: есть

Таким образом современные широкомасштабные информационные системы обучения представляют собой сетевые информационные среды обучения, которые могут быть реализованы как при дистанционном обучении, так и при очной форме.




2019-12-29 186 Обсуждений (0)
G. 1.8 Обзор информационных систем обучения 0.00 из 5.00 0 оценок









Обсуждение в статье: G. 1.8 Обзор информационных систем обучения

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (186)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)