Мегаобучалка Главная | О нас | Обратная связь


Оператор дифференцирования.



2019-12-29 403 Обсуждений (0)
Оператор дифференцирования. 0.00 из 5.00 0 оценок




 

Рассмотрим оператор дифференцирования Д действующий в пространстве дифференцируемых функций – D[a,b], заданный следующим образом:

Дf(x) = f/(x);

Функция f(x)  D[a, b], f/(x)  C[a, b];

 

Проверим оператор Д на линейность, по определению 1:

1) Аксиома аддитивности: Д(f+g) = Д(f) + Д(g).

Д(f+g) = (f+g)/ = f/ + g/ = Д(f) + Д(g).

2) Аксиома однородности: Д(kf) = kД(f).

Д(kf) = (kf) / = k(f)/ = kД(f).

Исходя из свойств производной:

1. производная от алгебраической суммы нескольких функций равна алгебраической сумме их производных;

2. постоянный множитель можно вынести за знак производной.

Можно утверждать, что Д – линейный оператор.

 

3) Для линейных операторов ограниченность и непрерывность оператора эквивалентны, это следует из теоремы 3.

3.1) Для начала покажем, что Д не является непрерывным оператором.

Задан оператор Дf(x) = f/(x) подпространства E  C[0, 2 ], состоящего из непрерывно дифференцируемых функций, в пространство C[0, 2 ].

Рассмотрим f0(x) = 0  C[0, 2 ] и последовательность функций fn(x)= .

В пространстве E  C[0, 2 ]: p (f0, fn) = | | =  0, следовательно fn  f0.

Рассмотрим последовательность образов: Д(fn ) = cos(nx).

Имеем:

p (Дfn, Дf0) = |cos(nx)|  = 1.

Это означает, что Дfn не может сходиться к Дf0 , то есть отображение Д терпит разрыв в f0.

Поскольку оператор не является непрерывным, то, следовательно, он и не является ограниченным.

3.2) Теперь покажем, как из неограниченности оператора следует его разрывность.

Пусть оператор Д действует из C[0, 1] в C[0, 1], оператор Дf(x) = f/(x);

Этот оператор определен не на всем пространстве непрерывных функций, а лишь на подпространстве непрерывных функций, имеющих непрерывную производную.

В пространстве C[0, 1] норма ||f|| = |f(t)|.

Возьмем из C[0, 1] последовательность fn(t) = tn. Она ограничена в C[0, 1]: ||fn(t)|| = |tn| = 1.

Рассмотрим Д fn(t): Д fn(t) = f/n(t) = n tn-1;

||f/n(t)|| = |n tn-1| = n.

В результате получили, что оператор Д переводит ограниченное множество в неограниченное, значит, по определению этот оператор не является ограниченным, а по теореме 3 не является непрерывным.

 

Вывод:

Оператор дифференцирования Д действующий в пространстве дифференцируемых функций – D[a,b], заданный следующим образом: Дf(x)=f/(x), где функция f(x)  D[a, b], f/(x)  C[a, b]:

1. линейный;

2. не ограниченный;

3. не непрерывный.


Оператор сдвига

 

Рассмотрим оператор А, действующий в пространстве непрерывных и ограниченных функций – C[ ], заданный следующим образом:

Af(x) = f(x+a).

Функции f(x), f(x+a)  C[ ], a  R, f(x+a) – непрерывная и ограниченная функция.

 

Покажем линейность оператора А, по определению 1 должны выполняться следующие аксиомы :

1) Аксиома аддитивности: А(f+g) = А(f) + А(g).

А(f+g) = (f+g)(x+a) = f(x+a) + g(x+a) = А(f) + А(g).

По определению суммы функции, аксиома верна.

2) Аксиома однородности: А(kf) = kА(f).

A(k*f(x)) = k*f(x+a) = k*A(f(x)).

Аксиомы 1 и 2 верны, следовательно можно сделать вывод, что А – линейный оператор.

 

3) Проверим является ли оператор A непрерывным, для этого воспользуемся определением непрерывности:

p (fn(x), f0(x))  0     p (A fn(x), Af0(x)) 0.

Оператор А действует в пространстве C[ ], в котором расстояние между функциями определяется следующим образом:

p (fn(x), f0(x)) = | fn(x) - f0(x)|.

Решение:

p (A fn(x), Af0(x)) = |Afn(x) - Af0(x)| = |fn(x+a) - f0(x+a)| =  = |fn(t) - f0(t)| = p (fn(t), f0(t))  0.

Таким образом p (A fn(x), Af0(x))  0. Следовательно оператор А непрерывен.

 

4) Непрерывный оператор является ограниченным, а у ограниченного оператора есть норма, найдем норму оператора А (по определению 5):

||A|| = |Af| = |f(x+a)|  1.

Поскольку ||f|| = |f(x)|  1.

Норма А: ||A|| = 1.

5) Обратимость оператора А: Af(x) = f(x+a)

Такой оператор A сдвигает функцию на const a; обратный к A оператор будет сдвигать функцию на const (-a):

A-1f(x) = f(x-a).

6) Спектр оператора А.

Рассмотрим пространство непрерывных функций – С[0, + ), имеющих конечный предел на :

Af(x) = f(x+a), a 0.

Вопрос о спектре оператора А касается разрешимости в пространствах С[0,b) и С[а,+ ).

Введем функцию V(x) =  при | |<1, 0, найдем ее предел:

 = 0

Следовательно рассмотренная функция входит в пространство С[0,+ ).

Теперь рассмотрим V(x+a) =  = *  = *V(x).

Для =0 подберем непрерывную функцию = 0 при x  а и не равную 0 при x  [0, a]. Для этой функции A(V(x)) = 0 то есть она является собственным вектором для числа 0; функция V(x) = с, так же удовлетворяет разностному отношению  V(x) - V(x+a) = 0. Значит =1  точечному спектру и в том и в другом пространстве. И все точки внутри единичного круга  точечному спектру.

Покажем, что остальные точки окружности  точечному спектру оператора А в пространстве С[0, + ).

Рассмотрим U(x) =  и число  =  (| | = 1);

U(x+a) =  =  = U(x);

U(x) =  = Cos( ) + iSin( ), принадлежит пространству С[0,b) так как мнимая и действительная части – функции ограниченные, но не принадлежат пространству С[a, + ) так как не имеют конечного предела на .

Если точки лежат вне единичного круга, то они регулярные для оператора А в 2-х пространствах.

Покажем, что в пространстве С[0, + ) точки  = ,  2 n не будут собственными числами.

Докажем это от противного: пусть найдется  = ,  2 n – собственное число, тогда найдется функция f(x)  С[0, + ), что

f(x+a) = f(x).

Применим оператор А n раз: f(x+n*a) = nf(x), тогда

 f(x+na) = nf(x), у левой части предел конечен;

правая часть предела не имеет, так как не имеет предела последовательность n =  = Cos( n) + iSin( n).

Следовательно  = ,  2 n собственным числом не является.

Эти точки будут принадлежать спектру оператора А в пространстве С[0,+ ), так как спектр замкнутое множество и граница единичного круга должна принадлежать спектру оператора А в пространстве С[0, + ).

Сделаем вывод:

При | |>1 все точки регулярные;

При | |<1 и =1 – точки спектра;

При  = ,  2 n – точки непрерывного спектра.

 

Вывод:

Оператор А, действующий в пространстве непрерывных и ограниченных функций – C[ ], заданный следующим образом: Af(x) = f(x+a), где функции f(x), f(x+a)  C[ ], a  R, f(x+a) – непрерывная и ограниченная функция:

1. линейный;

2. непрерывный и ограниченный;

3. норма А: ||A|| = 1;

4. A-1f(x) = f(x-a);

5. Спектр оператора А:

· при | |<1 и =1 – точки спектра;

· при  = ,  2 n – точки непрерывного спектра;

· При | |>1 все точки регулярные.

 


Заключение

 

В ходе проделанной работы были рассмотрены основные определения теории линейных операторов: непрерывность, ограниченность, норма, спектр оператора и резольвента. Проведено исследование четыре оператора: оператор умножения на непрерывную функцию, оператор интегрирования, оператор дифференцирования, оператор сдвига. Можно сказать, что поставленные цели были достигнуты.

 


Список литературы

1.  Колмогоров, А.Н. Элементы теории функций и функционального анализа [Текст]/ А.Н. Колмогоров, С.В. Фомин. – М.: Наука; Главная редакция физико–математической литературы, 1972.

2.  Соболев, В.И. Лекции по дополнительным главам математического анализа [Текст] / В.И. Соболев. - М.: Наука, 1968.

3.  Петров, В.А., Виленкин, Н.Я, Граев, М.И. Элементы функционального анализа в задачах [Текст]/ В.А. Петров, Н.Я. Виленкин, М.И. Граев под ред. О.А. Павлович. - М.: Просвещение, 1978.

4.  Данфорд, Н. Линейные операторы. Общая теория [Текст]/ Н. Данфорд, Дж.Т. Шварц; под ред. А.Г. Костюченко; пер. с англ. Л.И. Головина, Б.С. Литягина. – М.: Издательство иностранной литературы, 1926.

 


[1] Ex и Ey  - линейные многообразия, то есть если x, y  Ex , то x + y  Ey , при , .

Ex – область определения А;

Ey  - область значения А;

[2] Равенства 1 и 2 определяются как аксиомы аддитивности и однородности;

[3]Шаром в метрическом пространстве называется совокупность элементов x пространства, удовлетворяющих условию p ( xn , x 0 ) < а.

Шар D ( x 0 , a ).

Если p ( xn , x 0 )  а, то D ( x 0 , a ) – замкнутый шар.

Если p ( xn , x 0 ) = а, то S ( x 0 , a ) – сфера.

Всякий шар метрического пространства, содержащий точку y , называется окрестностью точки y .

 

[4]Свойства нормы оператора.

1) Если оператор  ограничен, , то и оператор  ограничен, причем .

2) Если операторы  ограничены, то и оператор  ограничен, причем  и .

 

[5]Линейный функционал, есть частный случай линейного оператора. Именно, линейный функционал есть линейный оператор, переводящий пространство E в числовую прямую.

 

[6] Резольвента – это функция комплексного переменного со значениями во множестве операторов, определенная на множестве регулярных чисел данного оператора.

 



2019-12-29 403 Обсуждений (0)
Оператор дифференцирования. 0.00 из 5.00 0 оценок









Обсуждение в статье: Оператор дифференцирования.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (403)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)