Сингулярное разложение матриц
Пусть X – матрица данных порядка Nxp, где N>p, и пусть r – ранг матрицы X. Чаще всего r=p, но приводимый ниже результат охватывает общий случай, он справедлив и при условии r<p. Теорема о сингулярном разложении утверждает, что
где V – матрица порядка Nxr, столбцы которой ортонормированы, т.е.
Имеют место следующие фундаментальные соотношения. · Квадратная симметричная матрица XX' порядка NxN, имеет r положительных и N–r нулевых собственных чисел. Положительными собственными числами XX' являются · Квадратная симметричная матрица X'X порядка pxp, имеет r положительных и p–r нулевых собственных чисел. Положительными собственными числами X'X являются Положительные собственные числа матрицы X'X и XX' совпадают и равны
Эти соотношения дают возможность вычислять
Исследование матрицы X'X в факторном анализе называется R-модификацией, а XX' – Q–модификацией. Соотношения (12)–(13) показывают, что результаты Q–модификации можно получить по результатам R–модификации и наоборот. Практическая последовательность нахождения сингулярного разложения следующая. 1. Вычисляется X'X или XX', в зависимости от того, порядок какой матрицы меньше. Предположим, что в данном случае это X'X. 2. Вычисляются положительные собственные числа 3. Находятся сингулярные числа 4. Вычисляются Пусть в разложении (11) собственные числа расположены в порядке убывания. Аппроксимационные свойства соотношения (11) являются еще более фундаментальными, чем само соотношение. Эти свойства вытекают из решения следующих двух задач. Задача 1. Дана симметричная матрица S, порядка pxp и ранга r с неотрицательными собственными значениями. Требуется найти симметричную матрицу Т, размерности pxp, с неотрицательными собственным значениями заданного ранга k, k<r, являющуюся наилучшей аппроксимацией матрицы S в смысле наименьших квадратов. Задача 2. Дана прямоугольная матрица X, порядка Nxp и ранга r и число k<r. требуется найти матрицу W порядка pxp и ранга k, наилучшим образом аппроксимирующую матрицу X в смысле наименьших квадратов. Решением этих двух задач являются матрицы:
представляющие собой суммы k первых членов в соответствующем разложении. Матрицы T и W называются наилучшими в смысле наименьших квадратов “матричными аппроксимациями меньшего ранга” для матриц S и X соответственно. Свойство наилучшей аппроксимации в смысле наименьших квадратов можно выразить следующим образом: матрица T ближе всего к матрице S в том смысле, что сумма квадратов всех элементов матрицы S–T минимальна. Аналогично матрица W ближе всего к матрице X в том смысле, что минимальна сумма квадратов элементов матрицы X–W. Мерой близости или качества аппроксимации считается относительная величина
или функция от нее. Рассмотрим наиболее распространенный случай p=r. Матрица S может быть ковариационной матрицей p линейно независимых переменных. Матрица T также может представлять собой ковариационную матрицу p переменных, но так как ранг матрицы T k<p, то эти p переменных линейно зависят от k переменных. Таким образом, p исходных переменных, ковариационная матрица которых есть S, могут быть приближенно выражены через k переменных. Во второй задаче исходную матрицу X порядка Nxp можно выразить как X=VГU’, где V – матрица порядка Nxp c ортонормированными столбцами; Г – диагональная матрица порядка pxp, а U – квадратная ортогональная матрица порядка pxp. Матричную аппроксимацию меньшего ранга W можно представить в виде
где
При умножении этой матрицы справа на
Матрица QR–разложение Теорема 2. Пусть А – m´n –матрица. Существует ортогональная m´m –матрица Q такая, что в матрице QA=R под главной диагональю стоят только нулевые элементы. Доказательство. Выберем ортогональную m´m –матрицу Q в соответствии с преобразованием Хаусхолдера (9), так, чтобы первый столбец Q1A имел нулевые компоненты со 2–ой по m–ю. Далее выбираем ортогональную (m-1)´(m–1)–матрицу P2 следующим образом. Будучи применена к m–1 вектору, составленному из компонент со 2–ой по m–ю второго столбца матрицы Q1A, она аннулирует компоненты с 3–ей по m–ю этого вектора. Матрица преобразования
ортогональна, и Q2Q1A имеет в первых двух столбцах нули под главной диагональю. Продолжая таким образом, можно построить произведение, состоящее максимум из n ортогональных преобразований, которое трансформирует А к верхней треугольной форме. Формальное доказательство можно получить методом конечной индукции. Полученное представление матрицы произведением ортогональной и верхней треугольной матриц называется QR–разложением. Теорема 3. Пусть А – m ´n –матрица ранга к, причем k<n £m. Существуют ортогональная m ´m –матрица Q и m ´n –матрица перестановки P такие, что
где R – верхняя треугольная к ´к –матрица ранга к . Доказательство. Выберем матрицу перестановки Р таким образом, чтобы первые к столбцов матрицы AP, были линейно независимы. Согласно теореме 2, найдется ортогональная m ´m–матрица Q такая, что QAP будет верхней треугольной. Поскольку первые к столбцов АР линейно независимы, это будет верно для первых к столбцов QAP. Все элементы матрицы QAP, стоящие на пересечении строк с номерами к+1,...,m и столбцов с номерами к+1,...,n, будут нулями. В противном случае rankQAP>k, что противоречит предположению rankA=k. Итак, QAP имеет форму, указанную правой частью (4). Теорема доказана. Подматрицу[R:T] из правой части (18) можно теперь преобразовать к компактной форме, требуемой от матрицы R из теоремы 2. Это преобразование описывает следующая лемма. Лемма 1. Пусть [R:T] – к ´к–матрица, причем R имеет ранг к. Существует ортогональная n ´n–матрица W такая, что
где Доказательство леммы вытекает из теоремы 3, если отождествить величины n, k, [R:T], W из формулировки леммы с соответствующими величинами m, n, AT, QT теоремы 3. Используя теорему 3 и лемму 1 можно доказать следующую теорему. Теорема 4. Пусть А – m ´n–матрица ранга к . Найдутся ортогональная m ´m–матрица Н и ортогональная n ´n–матрица К такие, что
причем R11 – невырожденная треугольная к ´к–матрица. Заметим, что выбором Н и К в уравнении (19) можно добиться, чтобы R11 была верхней или нижней треугольной. В (19) матрица А представлена произведением A= HRKT, где R – некоторая прямоугольная матрица, ненулевые компоненты которой сосредоточены в невырожденной треугольной подматрице. Далее мы покажем, что эту невырожденную подматрицу R можно упростить далее до невырожденной диагональной матрицы. Это разложение тесно связано со спектральным разложением симметричных неотрицательно определенных матриц ATA и AAT (см. 11). Теорема 5. Пусть А – m ´n–матрица ранга k. Тогда существуют ортогональная m ´m–матрица U, ортогональная n ´n–матрица V и диагональная m ´n–матрица S такие, что UTAV= S, A= USVT (20) Матрицу S можно выбрать так, чтобы ее диагональные элементы составляли невозрастающую последовательность; все эти элементы неотрицательны и ровно к из них строго положительны. Диагональные элементы S называются сингулярными числами А. Докажем сперва лемму для специального случая m=n=rankA. Лемма 2. Пусть А – n ´n–матрица ранга n. Тогда существует ортогональная n ´n–матрица U, ортогональная n ´n–матрица V и диагональная n ´n–матрица S такие, что UTAV= S, A= USVT и последовательные диагональные элементы S положительны и не возрастают. Доказательство леммы. Положительно определенная симметричная матрица ATA допускает спектральное разложение ATA=VDVT, (21) где V – ортогональная n ´n–матрица, а D – диагональная матрица, причем диагональные элементы D положительны и не возрастают. Определим S как диагональную n ´n–матрицу, диагональные элементы которой суть положительные квадратные корни из соответствующих диагональных элементов D. Таким образом D= STS= S2, S-1DS-1=I. (22) Определим матрицу U= AVS-1 (23) Из (21), (22), (23) и ортогональности V следует, что UTU=S-1VTATAVS-1=S-1DS-1=I т.е. U ортогональна. Из (23) и ортогональности V выводим USVT=AVS-1SVT=AVVT=A Лемма доказана. Доказательство теоремы 5. Пусть A= HRKT, где H, R, KT имеют свойства, указанные в теореме 4. Так как R11 из (19) – невырожденная треугольная к ´к–матрица, то согласно лемме 2 , можно написать
Здесь
где:
Теперь, определяя U и V формулами
заключаем из (24) – (26), что A= USVT, где U, S, V имеют свойства, указанные в формулировке теоремы 5. Это завершает доказательство. Заметим, что сингулярные числа матрицы А определены однозначно, в то время, как в выборе ортогональных матриц U, V есть произвол. Пусть s – сингулярное число А, имеющее кратность l. Это значит, что для упорядоченных сингулярных чисел найдется индекс I такой, что
Положим k=min(m,n), и пусть Q – ортогональная к ´к–матрица вида
Здесь Р – ортогональная l ´l–матрица Если A= USVT – сингулярное разложение А и si=…=si+l-1, то сингулярным разложением А будет также и Число обусловленности Некоторые вычислительные задачи поразительно чувствительны к изменению данных. Этот аспект численного анализа не зависит от плавающей арифметики или выбранного алгоритма. Например: Найти корни полинома: (x-2)2=10-6 Корни этого уравнения есть 2+10-3 и 2-10-3. Однако изменение свободного члена на 10-6 может вызвать изменение в корнях, равное 10-3. Операции с матрицами, как правило, приводят к решению систем линейных уравнений. Коэффициенты матрицы в правой части системы линейных уравнений редко известны точно. Некоторые системы возникают из эксперимента, и тогда коэффициенты подвержены ошибкам наблюдения. Коэффициенты других систем записываются формулами, что влечет за собой ошибки округлений. В связи с этим необходимо знать, как влияют ошибки в коэффициентах матрицы на решение. Именно для этого вводится понятие обусловленности матрицы. По определению число обусловленности есть величина Нормой вектора x в пространстве векторов 1) положительной определенности – 2) положительной однородности – 3) неравенству треугольника – Нормой квадратной матрицы А в пространстве матриц, согласованной с нормой вектора 1) 2) 3) 4) мультипликативное неравенство – Наиболее употребимы следующие нормы для векторов: · норма суммы модулей · евклидова норма · норма максимума модуля Нормы матриц: · · · Здесь Умножение вектора х на матрицу А приводит к новому вектору Ах, норма которого может очень сильно отличаться от нормы вектора х. Область изменений может быть задана двумя числами
Максимум и минимум берутся по всем ненулевым векторам. Заметим, что если А вырождена, то m=0. Отношение M/m называется числом обусловленности матрицы А,
Рассмотрим норму обратной[6] матрицы Для матрицы А существует сингулярное разложение Рассмотрим систему уравнений Ax=b, и другую систему, полученную изменением правой части: A(x+ Dx)=b+ Db . Будем считать Db ошибкой в b, а Dx соответствующей ошибкой в x, хотя нам нет необходимости считать ошибки малыми. Поскольку A( Dx)= Db, то определения M и m немедленно приводят к неравенствам
Величина Приведем некоторые свойства числа обусловленности. Ясно, что M ³m и поэтому cond(А) ³1. Если Р – матрица перестановок[7], то компоненты вектора Px лишь порядком отличаются от компонент вектора х. Отсюда следует, что
Популярное: Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (458)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |