Мегаобучалка Главная | О нас | Обратная связь


Глава 2. Реализация сингулярного разложения



2019-12-29 209 Обсуждений (0)
Глава 2. Реализация сингулярного разложения 0.00 из 5.00 0 оценок




Алгоритмы

QR–алгоритм начинается с разложения матрицы по Грамму-Шмидту , затем меняются местами сомножители:  Эта матрица подобна первоначальной,  Этот процесс продолжается, причем собственные значения не изменяются:

Эта формула описывает QR–алгоритм без сдвигов. Обычно время которое тратится на такой процесс пропорционально кубу размерности матрицы – n3. Необходимо процесс ускорить, для чего используется предварительное приведение матрицы А к форме Хессенберга[8] а также используется алгоритм со сдвигом. Форма Хессенберга представляет из себя верхнюю треугольную матрицу (верхняя форма Хессенберга) у которой сохранена одна диагональ ниже главной, а элементы ниже этой диагонали равны нулю. Если матрица симметрична, то легко видеть, что матрица Хессенберга превращается в трехдиагональную матрицу[9]. При использовании матрицы Хессенберга время процесса пропорционально n2, а при использовании трехдиагональной матрицы – n.

Можно использовать другие соотношения

где Qs – унитарная, а Ls – нижняя треугольная матрица. Такой алгоритм носит название QL–алгоритма.

В общем случае, когда все собственные значения матрицы различны, последовательность матриц As имеет пределом нижнюю треугольную матрицу , диагональные элементы которой представляют собой собственные значения матрицы А, расположенные в порядке возрастания их модулей. Если матрица А имеет кратные собственные значения, то предельная матрица не является треугольной, а содержит диагональные блоки порядка p, соответствующие собственному числу  кратности p.

В общем случае, наддиагональный элемент  матрицы As на s-ом шаге асимптотически равен , где kij – постоянная величина. Сходимость QL–алгоритма вообще говоря недостаточна. Сходимость можно улучшить, если на каждом шаге вместо матрицы As использовать матрицу As-ksI (QL–алгоритм со сдвигом). Последовательность вычислений в этом случае описывается следующими соотношениями:

которые определяют матрицу . При этом асимптотическое поведение элемента  определено соотношением , а не , как прежде. Если сдвиг ks выбрать близко к величине  (наименьшее собственное значение), то в пределе внедиагональные элементы первой строки будут очень быстро стремиться к нулю. Когда ими можно пренебречь, элемент  с рабочей точностью равен , остальные являются собственными значениями оставшейся матрицы n-1-го порядка. Тогда, если QL–алгоритм выполнен без ускорения сходимости, то все равно , и поэтому автоматически можно выделить величину сдвига ks.

Если матрица А эрмитова, то очевидно, что и все матрицы А s эрмитовы; если А действительная и симметричная, то все Qs ортогональны и все А s действительны и симметричны.

Реализация разложения

Таким образом, разложение  производится в два этапа. Сначала матрица А посредством двух конечных последовательностей преобразований Хаусхолдера где , приводится к верхней двухдиагональной форме следующего вида:

Далее реализуется итерационный процесс приведения двухдиагональной матрицы J0 к диагональной форме, так что имеет место следующая последовательность:  где  а Si и Ti – диагональные матрицы.

Матрицы Ti выбираются так, чтобы последовательность матриц  сходилась к двухдиагональной матрице. Матрицы же Si выбирают так, чтобы все Ji  сохраняли двухдиагональную форму. Переход  осуществляется с помощью плоских вращений (10) – преобразований Гивенса. Отсюда,  где

а матрица  вычисляется аналогично с заменой  на .

Пусть начальный угол  произволен, однако следующие значения угла необходимо выбирать так, чтобы матрица Ji+1 имела ту же форму, что и Ji. Таким образом  не аннулирует ни одного элемента матрицы, но добавляет элемент ;  аннулирует  но добавляет ;  аннулирует  но добавляет  и т.д., наконец,  аннулирует  и ничего не добавляет.

Этот процесс часто называют процессом преследования. Так как , то , и Mi+1 – трехдиагональная матрица, точно так же, как и Mi. Начальный угол  можно выбрать так, чтобы преобразование  было QR–преобразованием со сдвигом, равным s.

Обычный QR–алгоритм со сдвигом можно записать в следующем виде:

где  – верхняя треугольная матрица. Следовательно, . Параметр сдвига s определяется собственным значением нижнего минора (размерности 2´2) матрицы Mi. При таком выборе параметра s метод обладает глобальной и почти всегда кубичной сходимостью.



2019-12-29 209 Обсуждений (0)
Глава 2. Реализация сингулярного разложения 0.00 из 5.00 0 оценок









Обсуждение в статье: Глава 2. Реализация сингулярного разложения

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (209)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)