Мегаобучалка Главная | О нас | Обратная связь


МОДЕЛИРОВАНИЕ ЗАЩИТЫ ПОДЗЕМНОГО ЭТАЖА МНОГОЭТАЖНОГО КОМПЛЕКСА ОТ ВОЗДЕЙСТВИЯ ВЗРЫВА 50 КГ ТРОТИЛА С ПОМОЩЬЮ СТАЛЬНОГО ЭКРАНА



2019-12-29 174 Обсуждений (0)
МОДЕЛИРОВАНИЕ ЗАЩИТЫ ПОДЗЕМНОГО ЭТАЖА МНОГОЭТАЖНОГО КОМПЛЕКСА ОТ ВОЗДЕЙСТВИЯ ВЗРЫВА 50 КГ ТРОТИЛА С ПОМОЩЬЮ СТАЛЬНОГО ЭКРАНА 0.00 из 5.00 0 оценок




Постановка задачи

Приведены некоторые результаты исследования возможности защиты колонны подземного этажа многоэтажного комплекса от воздействия взрыва 50 кг тротила с помощью стального экрана. Постановка задачи отличается от предыдущего примера тем, что колонна находится внутри отрезка трубы диаметром 700 мм, высотой 2 м, толщиной стенки 10 мм. Материал защитного экрана - конструкционная сталь Ст.3.

Результаты моделирования

Моделирование проведено последовательно в три этапа по аналогии с предыдущим примером. На рисунке В.11 показаны моменты обтекания колонны и экрана ударной волной. На рисунке В.12 показана поврежденность бетона в начальный момент, в момент окончания воздействия взрыва t = 3,5 мс и в момент времени t = 100 мс. На рисунке В.13 показано начальное и конечное деформированные состояния защитного экрана. Из результатов моделирования следует, что бетон в основном разрушается в результате вторичного воздействия на колонну, а именно при соударении с экраном, разогнанным взрывной волной до скорости порядка 100 м/с. Поскольку существенная часть энергии взрыва была затрачена на упругопластическую деформацию материала экрана, интенсивность воздействия взрыва на колонну оказалось ослабленной. Несмотря на значительное повреждение бетона, колонна сохранила несущую способность, и катастрофического обрушения не произошло. Таким образом, защитный экран выполнил свою функцию и может быть рекомендован для защиты несущих колонн от воздействия взрывных нагрузок.

Рисунок В.11 - Геометрические модели расчетных областей

Время - 0,4 мс после взрыва Время - 0,6 мс после взрыва
Время - 1,0 мс после взрыва Время - 1,4 мс после взрыва

Рисунок В.12 - Обтекание колонны и экрана ударной волной

Время - 0 мс. Время - 3,5 мс. Время - 100 мс.

Рисунок В.13 - Распределение поврежденности в колонне

Время - 0 мс. Время - 100 мс.

Рисунок В.14 - Деформированное состояние защитного экрана

МОДЕЛИРОВАНИЕ ВЗРЫВА ЗАРЯДА ВЗРЫВЧАТОГО ВЕЩЕСТВА ВБЛИЗИ СТЕНЫ, ОГРАЖДАЮЩЕЙ СИСТЕМЫ ЖИЗНЕОБЕСПЕЧЕНИЯ ОБЪЕКТА

Постановка задачи

В данном примере моделируется воздействие взрыва заряда взрывчатого вещества на стену, ограждающую системы жизнеобеспечения объекта. Расчет проведен для двух вариантов материала стены. В первом варианте стена состоит из кирпичной кладки толщиной в два кирпича. Кирпич красный полнотелый M100. Длина пролета стены 7,7 м, высота 3,5 м. Второй вариант стены - монолитный железобетон класса В30, армированный арматурой класса А500 250s14d и толщиной 250 мм. Длина и ширина железобетонной стены 7,7 и 3,5 м. Геометрические и сеточные модели двух вариантов стены показаны на рисунке В.15.

Заряд тротила массой 50 кг подрывался на расстоянии 3 м от стены (рисунок В.16). Высота расположения заряда над нижним перекрытием этажа 0,5 м. Образовавшиеся в результате взрыва продукты детонации и воздушная ударная волна оказывают воздействие на стену, вызывая ее повреждение. В случае недостаточной прочности стены, образовавшиеся осколки могут вывести из строя оборудование системы жизнеобеспечения объекта.

Цель моделирования: расчет поражающей способности осколков стены из кирпичной кладки и монолитного железобетона и выработка рекомендаций по устройству стены.

Метод моделирования

Моделирование взрыва взрывчатого вещества проводили численным решением нестационарных уравнений газовой динамики в многокомпонентной постановке с использованием произвольного лагранжево-эйлерова метода (ALE). Рассматривали полную трехмерную модель с наложением соответствующих граничных условий не протекания на нижнем и верхнем перекрытиях этажа. На внешних границах расчетной области задавали условие не отражения. Детонация заряда тротила начальной плотности 1,63 г/см3, с давлением в точке Чемпмена-Жуге 21 ГПа, скоростью детонации 6,93 км/с считалась мгновенной. Сжимаемость продуктов детонации описывалось уравнением состояния Джонсона-Уилсона-Ли (JWL). Воздух рассматривали как идеальный газ с начальными параметрами, соответствующими нормальным условиям. Стена моделировалась объемными конечными элементами с упругопластическим поведением материала. Между элементами стены и газом задавалось условие контакта.

Рисунок В.15 - Геометрические и сеточные модели кирпичной и железобетонной стен (часть бетона не показана)

Рисунок В.16 - Геометрические модели расчетных областей



2019-12-29 174 Обсуждений (0)
МОДЕЛИРОВАНИЕ ЗАЩИТЫ ПОДЗЕМНОГО ЭТАЖА МНОГОЭТАЖНОГО КОМПЛЕКСА ОТ ВОЗДЕЙСТВИЯ ВЗРЫВА 50 КГ ТРОТИЛА С ПОМОЩЬЮ СТАЛЬНОГО ЭКРАНА 0.00 из 5.00 0 оценок









Обсуждение в статье: МОДЕЛИРОВАНИЕ ЗАЩИТЫ ПОДЗЕМНОГО ЭТАЖА МНОГОЭТАЖНОГО КОМПЛЕКСА ОТ ВОЗДЕЙСТВИЯ ВЗРЫВА 50 КГ ТРОТИЛА С ПОМОЩЬЮ СТАЛЬНОГО ЭКРАНА

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (174)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)