Мегаобучалка Главная | О нас | Обратная связь


Площадь плоской фигуры и ее измерение



2020-02-03 353 Обсуждений (0)
Площадь плоской фигуры и ее измерение 0.00 из 5.00 0 оценок




 

Каждый человек представляет, что такое площадь комнаты, площадь участка земли, площадь поверхности, которую надо покрасить. Он также понимает, что земельные участки одинаковы, то площади их равны; что площадь квартиры складывается из площади комнат и площади других помещений.

Это обыденное представление о площади используется при ее определении в геометрии, где говорят о площади фигуры. Но геометрические фигуры устроены по-разному, и поэтому, когда говорят о площади, выделяют определенный класс фигур. Например, рассматривают площадь многоугольника и др.

Так же, как и при рассмотрении длины отрезка и величины угла, будем использовать понятие «состоять из», определяя его следующим образом:

 

a)
Рис.1
F
F2

фигура состоит (составлена) из фигур  и , если она является их объединением и у них нет общих внутренних точек. В этой же ситуации можно говорить, что фигура  разбита на фигуры  и . Например, о фигуре , изображенной на рисунке 1,а, можно сказать, что она состоит из фигур  и , поскольку они не имеют общих внутренних точек. Фигуры  и  на рисунке 1,б имеют общие внутренние точки, поэтому нельзя утверждать, что фигура  состоит из фигур  и . Если фигура  состоит из фигур  и , то пишут:

 

.

 

Определение. Площадью фигуры называется положительная величина, определённая для каждой фигуры так, что:

1) равные фигуры имеют равные площади;

2) если фигура состоит из двух частей, то её площадь равна сумме площадей этих частей.

Чтобы измерить площадь фигуры, нужно иметь единицу площади. Как правило, такой единицей является площадь квадрата со стороной, равной единичному отрезку. Условимся площадь единичного квадрата обозначать буквой , а число, которое получается в результате измерения площади фигуры- . Это число называют численным значением площади фигуры  при выбранной единице площади . Оно должно удовлетворять условиям:

1) Число  - положительное.

2) Если фигуры равны, то равны численные значения их площадей.

3) Если фигура  состоит из фигур  и , то численное значение площади фигуры равно сумме численных значений площадей фигур  и .

4) При замене единицы площади численное значение площади данной фигуры  увеличивается (уменьшается) во столько же раз, во сколько новая единица меньше (больше) старой.

5) Численное значение площади единичного квадрата принимается равным 1, т.е. .

6) Если фигура  является частью фигуры , то численное значение площади фигуры  не больше численного значения площади фигуры

 

, т.е. .

 

В геометрии доказано, что для многоугольников и произвольных плоских фигур такое число всегда существует и единственно для каждой фигуры.

Фигуры, у которых площади равны, называются равновеликими.

Формулы для вычисления площади прямоугольника, треугольника, параллелограмма были выведены давно. В геометрии их обосновывают, исходя из определения площади, при этом численное значение длины отрезка – длиной.

Теорема. Площадь прямоугольника равна произведению длин соседних его сторон.

Напомним, что слово «площадь» в этой формулировке означает численное значение площади, а слово «длина» - численное значение длины отрезка.

Доказательство. Если - данный прямоугольник, а числа , -длины его сторон, то

 

 

Докажем это. Пусть  и - натуральные числа. Тогда прямоугольник  можно разбить на единичные квадраты (рис.2):

 

 

Всего их , так как имеем  рядов, в каждом из которых  квадратов. Отсюда

 

 


Пусть теперь  и - положительные рациональные числа:

 

,

 

где - натуральные числа. Приведем данные дроби к общему знаменателю:

 

,

 

Разобьем сторону единичного квадрата  на  равных частей. Если через точки деления провести прямые, параллельные сторонам, то квадрат  разделится на  более мелких квадратов. Обозначим площадь каждого такого квадрата . Тогда

 

 

а поскольку

 

, то .

 

Так как , , то отрезок длиной  укладывается на стороне  точно  раз, на стороне - точно  раз. Поэтому данный прямоугольник  будет состоять из  квадратов . Следовательно,

 

Таким образом доказано, что если длины сторон прямоугольника выражены положительными рациональными числами  и , то площадь этого прямоугольника вычисляется по формуле .

Случай, когда длины сторон прямоугольника выражаются положительными действительными числами, мы опускаем.

Из этой теоремы вытекает следствие: площадь прямоугольного треугольника равна половине произведения его катетов.

Теорема. Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне.

Доказательство. Пусть - параллелограмм, не являющийся прямоугольником (рис.3). Опустим перпендикуляр  из вершины  на прямую . Тогда .

 

 

Опустим перпендикуляр  из вершины  на прямую . Тогда

 

 

Так как треугольники  и  равны, то равны и их площади. Отсюда следует, что , т.е. площадь параллелограмма  равна площади прямоугольника  и равна , а так как , то .

Из это теоремы вытекает следствие: площадь треугольника равна половине произведения его стороны на проведенную к ней высоту.

Заметим, что слова «сторона» и «высота» в данных утверждениях обозначают численные значения длин соответствующих отрезков.

Теорема. Площадь правильного многоугольника равна половине произведения его периметра на радиус вписанной окружности.

Если периметр правильного многоугольника обозначить буквой , радиус вписанной окружности - , а площадь правильного многоугольника - , то, согласно данной теореме,

 

 

Доказательство. Разобьем правильный -угольник на  треугольников, соединяя отрезками вершины -угольника с центром вписанной окружности.

Эти треугольники равны. Площадь каждого из них равна

 

где - сторона правильного -угольника . Тогда площадь многоугольника равна

 

 

но . Следовательно,

 

 

Если -произвольный многоугольник, то его площадь находят, разбивая многоугольник на треугольники (или другие фигуры, для которых известны правила вычисления площади). В связи с этим возникает вопрос: если один и тот же многоугольник по-разному разбить на части и найти их площади, то будут ли полученные суммы площадей частей многоугольника одинаковыми? Доказано, что условиями, сформулированными в определении площади, площадь всякого многоугольника определена однозначно.

Кроме равенства и равновеликости фигур в геометрии рассматривают отношение равносоставленности. С ним связаны важные свойства фигур.

Многоугольники  и  называются равносоставленными, если их можно разбить на соответственно равные части.

Например, равносоставлены параллелограмм  и прямоугольник (рис.3), так как параллелограмм состоит из фигур  и , а прямоугольник – из фигур  и , причем .

Нетрудно убедиться в том, что равносоставленные фигуры равновелики.

Венгерским математиком Ф.Бойяи и немецким любителем математики П.Гервином была доказана теорема: любые два многоугольника равносоставлены. Другими словами, если два многоугольника имеют равные площади, то их всегда можно представить состоящими из попарно равных частей.

 

Рис. 4

Теорема Бойяни - Гервина служит теоретической базой для решения задач на перекраивание фигур: одну разрезать на части и сложить из нее другую. Оказывается, что если данные фигуры многоугольные и имеют одинаковые площади, то задача непременно разрешима.

Доказательство теоремы Бойяи-Гервина достаточно сложное. Мы докажем только утверждение о том, что всякий треугольник равносоставлен с некоторым прямоугольником, т.е. всякий треугольник можно перекроить в равновеликий ему прямоугольник.

Пусть дан треугольник  (рис.4). Проведем в нем высоту  и среднюю линию . Построим прямоугольник, одной стороной которого является , а другая лежит на прямой . Так как пары треугольников  и , а также  и  равны, то треугольник  и прямоугольник  равносоставлены.

Мы выяснили, что вычисление площади многоугольника сводится по существу к вычислению площадей треугольников, на которые можно разбить этот многоугольник. А как находить площадь произвольной плоской фигуры? И что представляет собой число, выражающее эту площадь?

 

 

Пусть  - произвольная плоская фигура. В геометрии считают, что она имеет площадь , если выполняются следующие условия: существуют многоугольные фигуры, которые содержатся в  (назовем их объемлющими); существуют многоугольные фигуры, которые содержаться в  (назовем их входящими); площадь этих многоугольных фигур как угодно мало отличаются от . Поясним эти положения. На рисунке 6 показано, что фигура  содержит фигуру , т.е. -объемлющая фигура, а фигура  содержится в , т.е. - входящая фигура. На теоретико-множественном языке это означает, что  и, следовательно, можно записать, что

 

 

Если разность площадей объемлющей и входящей фигур может стать как угодно малой, то как установлено в математике, существует единственное число , удовлетворяющее неравенству  для любых многоугольных фигур  и . Данное число и считают площадью фигуры .

Этими теоретическими положениями пользуются, например, когда выводят формулу площади круга. Для этого в круг  радиуса  вписывают правильный -угольник , а около окружности описывают правильный -угольник . Если обозначить символами  и  площади этих многоугольников, то будем иметь, что , причем при возрастании числа сторон вписанных и описанных многоугольников площади  будут увеличиваться, оставаясь при этом меньше площади круга, а площади  будут уменьшаться, но оставаться больше площади круга.

Площадь правильного -угольника равна половине произведения его периметра на радиус вписанной в него окружности. При возрастании числа его сторон периметр стремится к длине окружности , а площадь - к площади круга. Поэтому

 

 

Для приближенного измерения площадей плоских фигур можно использовать различные приборы, в частности, палетку.

Палетка- это прозрачная пластина, на которой нанесена сеть квадратов. Сторона квадрата принимается за 1, и чем меньше эта сторона, тем точнее можно измерить площадь фигуры.

 

 

Накладываем палетку на данную фигуру . Квадраты, которые целиком лежат внутри , образуют многоугольную фигуру ; квадраты, имеющие с фигурой  общие точки и лежащие внутри фигуры , образуют многоугольную фигуру  (рис.7). Площади и  находят простым подсчетом квадратов. За приближенное значение площади фигуры  принимается среднее арифметическое найденных площадей:

 

 

В начальном курсе математики учащиеся измеряют площади фигур с помощью палетки таким образом: подсчитывают число квадратов, которые лежат внутри фигуры , и число квадратов, через которые проходит контур фигуры; затем второе число делят пополам и прибавляют к первому. Полученную сумму считают площадью фигуры .

Нетрудно обосновать эти действия. Пусть  – число квадратов, которые поместились внутри фигуры , а  – число квадратов через которые проходит контур . Тогда , а

 

. И значит,

 

Палетка позволяет измерить площадь фигуры  с определенной точностью. Чтобы получить более точный результат, нужно взять палетку с более мелкими квадратами. Но можно поступить иначе: наложить одну и ту же палетку на фигуру по- разному и найти несколько приближенных значений площади фигуры . Их среднее арифметическое может быть лучшим приближением к численному значению площади фигуры .




2020-02-03 353 Обсуждений (0)
Площадь плоской фигуры и ее измерение 0.00 из 5.00 0 оценок









Обсуждение в статье: Площадь плоской фигуры и ее измерение

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (353)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)