Мегаобучалка Главная | О нас | Обратная связь


Теорема умножения вероятностей



2020-02-03 297 Обсуждений (0)
Теорема умножения вероятностей 0.00 из 5.00 0 оценок




Теорема. Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место

P(AB) = P(A)×P(B/A) = P(B)×P(A/B). (2.2)

Доказательство. Предположим, что из всевозможных элементарных исходов событию благоприятствуют исходов, из которых исходов благоприятствуют событию . Тогда вероятность события будет , условная вероятность события относительно события будет .

Произведению событий и благоприятствуют только те исходы, которые благоприятствуют и событию и событию одновременно, т.е. исходов. Поэтому вероятность произведения событий и равна

.

Умножим числитель и знаменатель этой дроби на . Получим

.

Аналогично доказывается и формула

.

Пример. На склад поступило 35 холодильников. Известно, что 5 холодильников с дефектами, но неизвестно, какие это холодильники. Найти вероятность того, что два взятых наугад холодильника будут с дефектами.

Решение. Вероятность того, что первый выбранный холодильник будет с дефектом, находится как отношение числа благоприятствующих исходов к общему числу возможных исходов

P(A) = 5/35 = 1/7.

Но после того, как был взят первый холодильник с дефектом, условная вероятность того, что и второй будет с дефектом, определяется на основе соотношения

Условная вероятность. Теорема сложения вероятностей для совместных событий.

Условная вероятность — это вероятность некоторого события A, при условии наступления некоторого другого события B; записывается P(A|B) и читается «вероятность A при условии B», или«вероятность A при данном B».

Совместная вероятность двух событий — это вероятность их пересечения. Совместная вероятность A иB записывается или P(A,B).

Тогда как маргинальная вероятность — это безусловная вероятность P(A) события A; то есть, вероятность события A, независимого от того, наступает ли какое-то другое событие B или нет. Если о B можно думать как о «некоторой случайной величине, принявшей данное значение», маргинальная вероятность A может быть получена суммированием (или более широко интегрированием) совместных вероятностей по всем значениям этой случайной величины. Например, если есть два возможных значения, соответствующие событиям B и B*, то . Эту процедуру иногда называютмаргинализацией вероятности.

Заметьте, что в этих определениях не требуется причинных или временных отношений между A и B. Aможет предшествовать B или наоборот или они могут случаться в одно и то же время. A может быть причиной B или наоборот или они могут не иметь никакого причинного отношения вообще. Заметьте, однако, что причинные и временные отношения — неформальные понятия, не принадлежащие вероятностной структуре. Они могут использоваться в некоторых примерах исчисления вероятностей, в зависимости от интерпретации, данной событиям.

Рассмотрим теоремы, позволяющие вычислить вероятность появления события А или В в результате одного испытания, т.е. вероятность суммы этих событий А+В. Возможны два случая: события совместны и несовместны.

Теорема1: Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий: Р(А+В)=Р(А)+Р(В).

Доказательство:

Число всех исходов N , число исходов благоприятствующих событию А- К, событию В- L . Так как А и В несовместны, то ни один из этих исходов не может благоприятствовать А и В одновременно, т.е. А и В взаимно исключающие, следовательно число благоприятствующих исходов для события А+В равно К+ L . Тогда вероятность равна

Формула Бернулли.

Формула Бернулли — формула в теории вероятностей, позволяющая находить вероятность появления события A при независимых испытаниях. Формула Бернулли позволяет избавиться от большого числа вычислений — сложения и умножения вероятностей — при достаточно большом количестве испытаний. Названа в честь выдающегося швейцарского математика Якоба Бернулли, выведшего формулу.

Так как в результате независимых испытаний, проведенных в одинаковых условиях, событие наступает с вероятностью , следовательно противоположное ему событие с вероятностью .

Обозначим — наступление события в испытании с номером . Так как условия проведения опытов одинаковые, то эти вероятности равны. Пусть в результате опытов событие наступает раз, тогда остальные раз это событие не наступает. Событие может появиться раз в испытаниях в различных комбинациях, число которых равноколичеству сочетаний из элементов по . Это количество сочетаний находится по формуле:

.

При этом вероятность каждой комбинации равна произведению вероятностей:

.

Применяя теорему сложения вероятностей несовместных событий, получим окончательную Формулу Бернулли:

, где .

Предположим, что несколько одинаковых машин в одних и тех же условиях перевозят груз. Любая машина может выйти из строя при этих перевозках. Пусть вероятность выхода из строя одной машины не зависит от выхода из строя других машин. Это значит, что рассматриваются независимые события (испытания). Вероятности выхода из строя каждой из этих машин примем одинаковыми ( ).

Пусть, в общем случае, производится независимых испытаний. Ставится задача определения вероятности того, что ровно в испытаниях наступит событие , если вероятность наступления этого события в каждом испытании равна . В случае с машинами это могут быть вероятности выхода из строя ровно одной машины, ровно двух машин и т.д.

Формула Бернулли

Пусть проводятся независимые испытания (такие, при которых вероятность появления события в каждом испытании не зависит от результатов предыдущих испытаний). Далее, вероятность наступления интересующего нас события в каждом испытании постоянна и равна p. Тогда вероятность того, что рассматриваемое событие появится ровно k раз при n испытаниях (безразлично, в каком порядке), равна

Формула Пуассона.

Рассмотрим ситуацию, когда вероятность появления события А в каждом независимом испытании близка к 0(такие события называются редкими явлениями), а количество испытаний велико. В этом случае локальная теорема Муавра - Лапласа дает результат недостаточно близкий к истинному . тогда применяют другую асимптотическую формулу, которая называется формулой Пуассона. Эту формулу дает следующая теорема:

Если вероятность р наступления события А постоянна, но близка к нулю, число независимых испытаний велико, произведение

то вероятность того, что в п независимых испытаниях событие А наступит т раз, приближенно равна ,

Решим задачу: Некоторое электронное устройство выходит из строя, если откажет определенная микросхем. Вероятность ее отказа в течении 1 час работы равна 0,004. Какова вероятность того. что за 1000 часов работы устройства придется а) 5 раз менять микросхему; б) не более двух раз менять микросхему; в) более двух раз менять микросхему?

Решение:

По условию п=1000, р=0,004 и близка к нулю, найдем np =1000·0,004 = 4. Применим формулу Пуассона.

а) Необходимо вычислить вероятность

б) Не более двух раз означает два или один , или ни одного раза. Для каждого случая вычислим вероятность и найдем их сумму.

в) Более двух раз означает от 3 до 1000. Но вычислить каждое значение и затем найти их сумму практически невозможно. Но можно составить противоположное событие и воспользоваться связью между противоположными событиями. Противоположное событие - не более двух раз. Его вероятность мы вычислили в предыдущем пункте и она равна 0,2379, тогда вероятность искомого события 1-0,2379=0,7621.

При большом числе испытаний n и малой вероятности р формулой Бернулли пользоваться неудобно, например, вычислить трудно. В этом случае для вычисления вероятности того, что в n испытаниях (n – велико) событие произойдет k раз, используют формулу Пуассона:

– среднее число появлений события в n испытаниях.

Эта формула дает удовлетворительное приближение для и . При больших рекомендуется применять формулы Лапласа (Муавра-Лапласа). Cобытия, для которых применима формула Пуассона, называют редкими, так как вероятность их осуществления очень мала (обычно порядка 0,001-0,0001).

 

 

Понятие случайной величины. Закон распределения дискретных случайных величин.

Основные вопросы лекции: математическое ожидание случайной величины, свойства математического ожидания, дисперсия случайной величины, дисперсия суммы случайных величин, функция от случайных величин, математическое ожидание функций от случайных величин, коэффициент корреляции, моменты, корреляционный момент, виды сходимости последовательности случайных величин, неравенства Чебышева, график функции распределения для непрерывной случайной величины, различные формы закона больших чисел, теорема Чебышева, теорема Бернулли, теорема Маркова, центральная предельная теорема теории вероятностей, применение центральнойпредельной теоремы, обоснование роли нормального закона распределения, вывод приближенной формулы Лапласа. Случайная величина, интересующая нас, X = т – число белых шаров в выборке объемом в n шаров. Число всех возможных случаев отбора n шаров из N равно числу сочетаний из N по n (CNn), а число случаев отбора т белых шаров из имеющихся К белых шаров (и значит, n–m черных шаров из N–K имеющихся черных) равно произведению CKmCN–Kn–m (отбор каждого из т белых шаров может сочетаться с отбором любого из n-т черных). Событие, вероятность которого мы хотим определить, состоит в том, что в выборке из n шаров окажется ровно т белых шаров.

Итак, вероятность появления интересующего нас события ровно т раз в n зависимых испытаниях вычисляется по формуле (1), которая задает значения гипергеометрического закона распределения для т = 0, 1, 2,…, n

Закон распределения непрерывной случайной величины можно задать в виде интегральной функции распределения, являющейся наиболее общей формой задания закона распределения случайной величины, а также в виде дифференциальной функции (плотностираспределения вероятностей), которая используется для описания распределения вероятностей только непрерывной случайной величины.

Для задания дискретной случайной величины недостаточно перечислить все ее возможные значения, нужно указать еще и их вероятность.

Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и вероятностями их появления.

Закон распределения можно задать таблично, аналитически (в виде формулы) или графически (в виде многоугольника распределения).

Рассмотрим случайную величину X, которая принимает значения x1 , x2, x3 ... xn с некоторой вероятностью pi, где i = 1.. n. Сумма вероятностей piравна 1.

называется рядом распределения дискретной случайной величины или просто рядом распределения. Эта таблица является наиболее удобной формой задания дискретной случайной величины.

Графическое представление этой таблицы называется многоугольником распределения. По оси абсцисс откладываются возможные значения дискретной случайной величины, а по оси ординат соответствующие вероятности.

Числовые характеристики дискретных случайных величин.

Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые заранее не могут быть учтены.
Дискретной называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями.
Число возможных значений дискретной случайной величины может быть конечным или бесконечным.
Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями.
Закон распределения дискретной случайной величины можно задать таблично, в виде формулы (аналитически) и графически.

Числа, которые описывают случайную величину суммарно, называют числовыми характеристиками случайной величины.
Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности:
,
где – возможные значения случайной величины , а – соответствующие вероятности.
Замечание. Вышеприведенная формула справедлива для дискретной случайной величины, число возможных значений которой конечно. Если же случайная величина имеет счетное число возможных значений, то для нахождения математического ожидания используют формулу:
,
причем это математическое ожидание существует при выполнении соответствующего условия сходимости числового ряда в правой части равенства.
Вероятностный смысл математического ожидания: математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.

Закон распределения полностью характеризует случайную величину. Однако, когда невозможно найти закон распределения, или этого не требуется, можно ограничиться нахождением значений, называемых числовыми характеристиками случайной величины. Эти величины определяют некоторое среднее значение, вокруг которого группируются значения случайной величины, и степень их разбросанности вокруг этого среднего значения.

Непрерывная случайная величина. Закон распределения вероятностей и основные числовые характеристики.

Математическим ожиданием непрерывной случайной величины , возможные значения которой принадлежат отрезку , называют определенный интеграл
.
Если возможные значения принадлежат всей числовой оси, то

(предполагается, что несобственный интеграл, стоящий в правой части равенства, существует).
Дисперсией непрерывной случайной величины называют математическое ожидание квадрата ее отклонения.
Если возможные непрерывной случайной величины принадлежат отрезку , то
.
Если возможные значения принадлежат всей числовой оси, то

(предполагается, что несобственный интеграл, стоящий в правой части равенства, существует).
Средним квадратическим отклонением непрерывной случайной величины называют, как и для величины дискретной, квадратный корень из дисперсии:
.


Кроме дискретных случайных величин, возможные значения которых образуют конечную или бесконечную последовательность чисел, не заполняющих сплошь никакого интервала, часто встречаются случайные величины, возможные значения которых образуют некоторый интервал. Примером такой случайной величины может служить отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе. Такого рода, случайные величины не могут быть заданы с помощью закона распределения вероятностей р(х). Однако их можно задать с помощью функции распределения вероятностей F(х). Эта функция определяется точно так же, как и в случае дискретной случайной величины:


Таким образом, и здесь функция F(х) определена на всей числовой оси, и ее значение в точке х равно вероятности того, что случайная величина примет значение, меньшее чем х.
Формула (19) и свойства 1° и 2° справедливы для функции распределения любой случайной величины. Доказательство проводится аналогично случаю дискретной величины.
Случайная величина называется непрерывной, если для нее существует неотрицательная кусочно-непрерывная функция* , удовлетворяющая для любых значений x равенству

Биноминальный закон распределения. Распределение Пуассона

Биномиа́льное распределе́ние в теории вероятностей — распределение количества «успехов» в последовательности из независимых случайных экспериментов, таких что вероятность «успеха» в каждом из них постоянна и равна . Биноминальное распределение - это распределение вероятностей возможных чисел появления события А при n независимых испытаниях, в каждом из которых событие А может осуществиться с одной и той же вероятностью Р(А) = р = const. Кроме события А может произойти также противоположное событие Ā, вероятность которого Р(Ā) = 1 - р = q

Если производится п независимых испытаний, в каждом из которых событие А может появиться с одинаковой вероятностью р в каждом из испытаний, то вероятность того, что событие не появится, равна q = 1 – p .

Примем число появлений события в каждом из испытаний за некоторую случайную величину Х.

Чтобы найти закон распределения этой случайной величины, необходимо определить значения этой величины и их вероятности.

Значения найти достаточно просто. Очевидно, что в результате п испытаний событие может не появиться вовсе, появиться один раз, два раза, три и т.д. до п раз.

Вероятность каждого значения этой случайной величины можно найти по формуле Бернулли.

Эта формула аналитически выражает искомый закон распределения. Этот закон распределения называется биноминальным. Пример. В партии 10% нестандартных деталей. Наугад отобраны 4 детали. Написать биноминальный закон распределения дискретной случайной величины Х – числа нестандартных деталей среди четырех отобранных и построить многоугольник полученного распределения.

Распределение Пуассона моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.

Распределение Пуассона играет ключевую роль в теории массового обслуживания.

Пуассона распределение, одно из важнейших распределений вероятностей случайных величин, принимающих целочисленные значения. Подчинённая П. р. случайная величина Х принимает лишь неотрицательные значения, причём Х = kc вероятностью

, k =0, 1, 2,...

Равномерное распределение.

Непрерывная случайная величина имеет равномерное распределение на отрезке [a , b], если на этом отрезке плотность распределения случайной величины постоянна, а вне его равна нулю.

Постоянная величина С может быть определена из условия равенства единице площади, ограниченной кривой распределения.

Для того, чтобы случайная величина подчинялась закону равномерного распределения необходимо, чтобы ее значения лежали внутри некоторого определенного интервала, и внутри этого интервала значения этой случайной величины были бы равновероятны.

Определим математическое ожидание и дисперсию случайной величины, подчиненной равномерному закону распределения.

Непреры́вное равноме́рное распределе́ние — в теории вероятностей распределение, характеризующееся тем, чтовероятность любого интервала зависит только от его длины.

На практике встречаются случайные величины, о которых заранее известно, что они могут принять какое-либо значение в строго определенных границах, причем в этих границах все значения случайной величины имеют одинаковую вероятность (обладают одной и той же плотностью вероятностей).

Например, при поломке часов остановившаяся минутная стрелка будет с одинаковой вероятностью (плотностью вероятности) показывать время, прошедшее от начала данного часа до поломки часов. Это время является случайной величиной, принимающей с одинаковой плотностью вероят­ности значения, которые не выходят за границы, определенные продолжительностью одного часа. К подобным случайным величинам относится также и погрешность округления. Про такие величины говорят, что они распределены равномерно, т. е. имеют равномерное распределение.

Определение. Непрерывная случайная величина Х имеет равномерное распределение на отрезке [а, в], если на этом отрезке плотность распределения вероятности случайной величины постоянна, т. е. если дифференциальная функция распределения f (х) имеет следующий вид:

Нормальное распределение.

Нормальное распределение, также называемое гауссовым распределением или распределением Гаусса —распределение вероятностей, которое задается функцией плотности распределения:

где параметр μ — среднее значение (математическое ожидание) случайной величины и указывает координату максимума кривой плотности распределения, а σ² — дисперсия.

Нормальное распределение играет важнейшую роль во многих областях знаний, особенно в статистической физике. Физическая величина, подверженная влиянию значительного числа независимых факторов, способных вносить с равной погрешностью положительные и отрицательные отклонения, вне зависимости от природы этих случайных факторов, часто подчиняется нормальному распределению, поэтому из всех распределений в природе чаще всего встречается нормальное (отсюда и произошло одно из названий этого распределения вероятностей).

Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.

Нормальное распределение часто встречается в природе. Например, следующие случайные величин хорошо моделируются нормальным распределением:

§ отклонение при стрельбе

§ некоторые погрешности измерений (однако, многие погрешности приборов в технике имеют сильно не нормальные распределения)

§ рост живых организмов

Такое широкое распространение закона связано с тем, что он является предельным законом, к которому приближаются многие другие (например, биномиальный).

Центральная предельная теорема показывает, что в случае, когда результат измерения (наблюдения) складывается под действием многих независимых причин, причем каждая из них вносит лишь малый вклад, а совокупный итог определяется аддитивно, т.е. путем сложения, то распределение результата измерения (наблюдения) близко к нормальному.

 

 

 



2020-02-03 297 Обсуждений (0)
Теорема умножения вероятностей 0.00 из 5.00 0 оценок









Обсуждение в статье: Теорема умножения вероятностей

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (297)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)