Мегаобучалка Главная | О нас | Обратная связь


Решение исходной задачи I алгоритмом симплекс-метода



2020-02-04 195 Обсуждений (0)
Решение исходной задачи I алгоритмом симплекс-метода 0.00 из 5.00 0 оценок




 

Описание I алгоритма

Симплекс-метод позволяет, отправляясь от некоторого исходного опорного плана и постепенно улучшая его, получить через конечное число итераций оптимальный план или убедиться в неразрешимости задачи. Каждой итерации соответствует переход от одной таблицы алгоритма к следующей. Таблица, отвечающая опорному плану в ν-й итерации имеет вид табл. 4.1.

 

Таблица 4.1

 

      C  
N B t
1  
 
l
 
m  
m+1

 

Заполнение таблицы, соответствующей исходному опорному плану (0-й итерации). Пусть  некоторый опорный план задачи (2.1) - (2.3) с базисом . Тогда  – базисные компоненты, а  – небазисные компоненты.

Вычисляем коэффициенты разложения векторов Аj по базису Б0

 (в случае, если Б0 является единичной матрицей, )

и находим оценки . Далее определяем значение линейной формы

Полученные результаты записываем в таблицу 4.1.

В первом столбце N таблицы указываются номера строк. Номера первых m строк совпадают с номерами позиций базиса. Во втором столбце Сх записываются коэффициенты линейной формы при базисных переменных. Столбец Бх содержит векторы базиса . В столбце В записываются базисные переменные  опорного плана. Столбцы содержат коэффициенты разложения соответствующих векторов условий  по векторам базиса. Все вышесказанное относится только к первым m строкам таблицы. Последняя (m+1)-я строка таблицы заполняется последовательно значением линейной формы F и оценками . Позиции таблицы, которые не должны заполняться, прочеркиваются.

В результате заполнена таблица 0-й итерации кроме столбца t.

Столбцы В, А1,…, An (все m+1 позиций) будем называть главной частью таблицы.

Порядок вычислений в отдельной итерации. Пусть ν-я итерация закончена. В результате заполнена таблица ν за исключением последнего столбца t.

Каждая итерация состоит из двух этапов.

I этап: проверка исследуемого опорного плана на оптимальность.

Просматривается (m+1)-я строка таблицы ν. Если все , то опорный план, полученный после ν-й итерации, является оптимальным (случай 1), завершаем решение задачи. Пусть теперь имеются отрицательные оценки. Проверяем знаки элементов  столбцов  с . Наличие по крайней мере одного столбца , для которого  и все , свидетельствует о неразрешимости задачи (случай 2). Установив это, прекращаем вычисления.

Если в каждом столбце , для которого , содержится хотя бы один положительный коэффициент , то опорный план является неоптимальным (случай 3). Переходим ко II этапу.

II этап: построение нового опорного плана с большим значением линейной формы.

Определяется вектор Ak, который должен быть введен в базис, из следующего условия

.

После этого заполняется последний столбец таблицы ν – столбец t. В него записываются отношения базисных переменных  (элементы столбца В) к соответствующим составляющим  (элементы столбца Ak). Т.о. заполняются только те позиции, для которых . Если , то в позиции i столбца t записывается . Вектор базиса , на котором достигается t0,

,

подлежит исключению из базиса (если t0 достигается на нескольких векторах, то из базиса исключается любой из них).

Столбец Ak , отвечающий вектору, вводимому в базис, и l-я строка, соответствующая вектору , исключаемому из базиса, называется соответственно разрешающим столбцом и разрешающей строкой. Элемент , расположенный на пересечении разрешающего столбца и разрешающей строки, называется разрешающим элементом.

После выделения разрешающего элемента заполняется (ν+1)-я таблица. В l-е позиции столбцов Бх, Сх вносятся соответственно Ак, Ск, которые в (ν+1)-й таблице обозначаются как , . В остальные позиции столбцов Бх, Сх вносятся те же параметры, что и в таблице ν.

Далее заполняется главная часть (ν+1)-й таблицы. Прежде всего происходит заполнение ее l-й строки в соответствии с рекуррентной формулой

.

Рекуррентная формула для заполнения i-й строки (ν+1)-й таблицы имеет вид

.

Здесь

.

Заполнение главной части (ν+1)-й таблицы завершает (ν+1)-ю итерацию. Последующие итерации проводятся аналогично. Вычисления продолжаются до тех пор, пока не будет получен оптимальный план либо будет установлено, что исследуемая задача неразрешима.

 

Решение исходной задачи

Весь процесс решения исходной задачи (2.12) - (2.13) приведен в табл. 4.2.

Заполнение таблицы, отвечающей 0-й итерации, происходит на основе табл. 3.2.1 (см. итерацию 1) следующим образом. Главная часть таблицы 0-й итерации исходной задачи (за исключением (m+1)-й строки) полностью повторяет главную часть таблицы заключительной итерации L-задачи без столбца А9. Также без изменений остается столбец базисных векторов Бх. Строка С коэффициентов линейной формы исходной задачи и столбец Сх коэффициентов при базисных переменных заполняются исходя из (2.12). С учетом новых коэффициентов С пересчитываются значение линейной формы F и оценки .

Заполнение таблиц, отвечающих последующим итерациям, происходит в соответствии с описанным выше первым алгоритмом.

 

Таблица 4.2

 

Решение исходной задачи (2.12) - (2.13) получено за 3 итерации. Оптимальный план ее равен  и .

Найденное решение  задачи в канонической форме (2.12) - (2.13) соответствует решению  (4.1) общей задачи линейного программирования (2.9) - (2.11), записанной для новых переменных . Для общей задачи из (2.9) следует, что  (4.2).

Вернемся к задаче (1.2.1), (1.2.2) со старыми переменными . Учитывая (4.1) и (4.2) из (2.7) и (2.8) получим

 

                                                                                         (4.3)

и

.                                                      (4.4)

       Таким образом, для получения максимальной цены (142750 руб.) всей продукции необходимо произвести:

- 450 тыс.л. бензина А из полуфабрикатов в следующих количествах:

- Алкитата тыс.л.

- Крекинг-бензина тыс.л.

- Бензина прямой перегонки тыс.л.

- Изопентона тыс.л.

-  тыс.л. бензина В из полуфабрикатов в следующих количествах:

- Алкитата тыс.л.

- Крекинг-бензина тыс.л.

- Бензина прямой перегонки тыс.л.

- Изопентона тыс.л.

- 300 тыс.л. бензина В из полуфабрикатов в следующих количествах:

- Алкитата тыс.л.

- Крекинг-бензина тыс.л.

- Бензина прямой перегонки тыс.л.

- Изопентона тыс.л.

 

 

Формирование М-задачи

 

Далеко не всегда имеет смысл разделять решение задачи линейного программирования на два этапа – вычисление начального опорного плана и определение оптимального плана. Вместо этого решается расширенная задача (М-задача). Она имеет другие опорные планы (один из них всегда легко указать), но те же решения (оптимальные планы), что и исходная задача.

Рассмотрим наряду с исходной задачей (2.1) - (2.3) в канонической форме следующую расширенную задачу (М-задачу):

 

                                                             (5.1)

                                                                      (5.2)

.                                                                                    (5.3)

Здесь М>0 – достаточно большое число.

Начальный опорный план задачи (5.1) - (5.3) имеет вид

Переменные  называются искусственными переменными.

Таким образом, исходная задача линейного программирования с неизвестным заранее начальным опорным планом сводится к М-задаче, начальный опорный план которой известен. В процессе решения этой расширенной задачи можно либо вычислить оптимальный план задачи (2.1) - (2.3), либо убедиться в ее неразрешимости, если оказывается неразрешимой М-задача.

 

В соответствии с вышеизложенным имеем: требуется решить задачу (2.12), (2.13), записанную в канонической форме. Введем искусственную неотрицательную переменную х9 и рассмотрим расширенную М-задачу

                                  (5.4)

при условиях

              (5.5)

, где .

где М – сколь угодно большая положительная величина.

 

Как и в L-задаче, добавление только одной искусственной переменной  (вместо пяти) обусловлено тем, что исходная задача уже содержит четыре единичных вектора условий А4, А5, А6, А7.



2020-02-04 195 Обсуждений (0)
Решение исходной задачи I алгоритмом симплекс-метода 0.00 из 5.00 0 оценок









Обсуждение в статье: Решение исходной задачи I алгоритмом симплекс-метода

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (195)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)