Формирование двойственной задачи
Произвольной задаче линейного программирования определенным образом соответствует некоторая другая задача линейного программирования. Будем называть ее двойственной, а первоначальную задачу – исходной. Обозначим ; ; ; ; (7.1) Теперь исходная задача (2.1) - (2.3) в канонической форме может быть записана в матричном виде следующим образом. Требуется определить вектор , обращающий в максимум . (7.2) при условиях AX=B; (7.3) . (7.4) Тогда двойственная задача – определить вектор , обращающий в минимум f(Y)=YB (7.5) при условиях . (7.6) Транспонируя обе части неравенства (7.6), записанного в виде строки, и учитывая , получим . (7.7) Отметим, что в двойственной задаче переменные yi могут быть и отрицательными.
Рассмотрим в качестве исходной задачу (2.12), (2.13). С учетом (7.1) и (7.7) запишем С = (120, 100, 150, 0, 0, 0, 0, 0), B = ( , , , , ), .
Двойственная задача имеет вид
; (7.8) (7.9)
8. Формирование оптимального решения двойственной задачи на основе теоремы о двойственности
Оказывается, что для задач (7.2) - (7.4) и (7.5), (7.6), называемых двойственной парой, справедлива следующая теорема. Теорема (первая теорема о двойственности). Если одна из задач двойственной пары (7.2) - (7.4) и (7.5), (7.6) имеет решение, то другая задача также разрешима. При этом для любых оптимальных планов и (здесь Мх, Му – множества планов соответственно прямой и двойственной задач) задач (7.2) - (7.4) и (7.5), (7.6) имеет место равенство . Если линейная форма одной из задач не ограничена (для F(X) – сверху, для f(Y) - снизу), то другая задача не имеет ни одного плана.
Оптимальное решение двойственной задачи может быть найдено на основе следующего следствия из этой теоремы. Следствие. Если вектор является оптимальным опорным планом задачи (7.2) - (7.4), то вектор (8.1), является оптимальным опорным планом задачи (7.5), (7.6).
Стоит отметить, что в ходе решения исходной задачи вторым алгоритмом, при каждом шаге вычисляется вектор . И если Х – оптимальный опорный план задачи (7.2) - (7.4), то в (m+1)-й строке, соответствующей основной таблице, находится решение задачи (7.5), (7.6).
Пусть двойственная задача имеет вид (7.8), (7.9).
Так как исходная задача (2.12), (2.13) имеет решение, то на основании рассмотренной теоремы о двойственности двойственная задача также разрешима. Оптимальным опорным планом исходной является (см. п.4, п.6). При этом ; ; . Вычислим .
На основании следствия из теоремы о двойственности можно заключить, что является оптимальным планом двойственной задачи, при котором . Анализируя (m+1)-ю строку основной таблицы (см. табл. 6.3, шаг 5), можно убедиться в том, что оптимальный план двойственной задачи, сформированный на основе теоремы о двойственности, совпадает с оптимальным планом, найденном при решении исходной задачи вторым алгоритмом симплекс-метода. Это говорит о том, что оптимальный план задачи (7.8) - (7.9) найден верно.
Популярное: Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (203)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |