Мегаобучалка Главная | О нас | Обратная связь


Математические модели регуляции дыхания



2020-02-04 352 Обсуждений (0)
Математические модели регуляции дыхания 0.00 из 5.00 0 оценок




Современные модели регуляции дыхания по зволяют предсказать динамику существенных параметров вентиляции при изменении условий внешней или внутренней сред организма. Моделирование дыхательной системы предусматривает учет экспериментально полученных данных о физиологических механизмах, лежащих в основе реализации принципа отрицательной обратной связи. В основе большинства хемостатических моделей лежит сравнительно хорошо изученная химическая регуляция. Обычно различают 2 типа моделей регуляции дыхания. В первом типе моделей исходят из следующих принципов. Изменение концентрации СО2 и О2 во вдыхаемом воздухе или изменения метаболизма в тканях приводят к отклонению регулируемых переменных (артериальной Н+, рО2, рСО2 и Н+ цереброспинальной жидкости) от их эталонных значении. Рассогласование регулируемой величины от эталонной воспринимается периферическими и центральными хеморецепторами, здесь возникает сигнал, который передается к регулятору (дыхательному центру). Дыхательный центр вырабатывает сигнал, меняющий вентиляцию легких (одновременно с работой сердца), чтобы устранить возникшие рассогласования. Во втором типе моделей ведущим принципом является также изменение вентиляции, имеющее целью удержать в новых изменившихся условиях средний расход энергии на осуществление дыхания на минимальном уровне. Модели этого типа используют последние концепции теории регулирования, в частности теории полуадаптивных многоуровневых управляющих систем. Модели состоят из 3 взаимодействующих петель обратной связи, регулирующих химический состав артериальной крови, активность дыхательной мускулатуры, диаметр воздухоносных путей. Недостатком этого типа моделей является игнорирование роли центральных хеморецепторов и отсутствие информации о реакции модели на изменение СО2 и О2 во вдыхаемом воздухе.

Для описания зависимости между параметрами дыхательной системы Рашевски (Rashevsky, 1962) использовал дифференциальные уравнения. Процесс диффузии кислорода из полости легочной альвеолы в кровеносные капилляры описывается следующим уравнением:

где V—объем альвеолы; de/dt—изменение концентрации О2 в альвеоле в процессе диффузии; S—поверхность альвеолы; е—концентрация О2 в альвеолярном воздухе; h—коэффициент проницаемости альвеолярного эпителия и стенок капилляров для О2; cb— концентрация О2 в крови.

Предложена математическая модель для описания связи между давлением и величиной воздушного потока в легких при условии постоянства легочного объема (Stevens, 1973). Показано, что в фазе вдоха основными параметрами воздушного потока являются сопротивление воздухоносного тракта и альвеолярное давление. В фазе выдоха существенным становится упругость, эластичность легочной ткани.

В моделях регуляции дыхания важная роль отводится хеморецепторной системе, состоящей из синокаротидной и аортальной периферических чувствительных зон, омываемых артериальной кровью, и центральной мозговой чувствительной зоны, омываемой спинномозговой жидкостью. Каждой из этих зон приписывается примерно линейная динамика. Периферические чувствительные зоны модели воспринимают изменения концентрации СО2 и О2 в артериальной крови. Центральные чувствительные зоны реагируют только на концентрацию СО2 в спинномозговой жидкости. Модель применима для изучения регуля ции дыхания как в переходном режиме, так и в устойчивом состоянии при соблюдении ряда условий, включая ступенчатое изменение концентрации СО2 и О2 в окружающем воздухе, изменение различных параметров внутренней среды организма.

Предложена динамическая модель при изучении связи сердечнососудистой и дыхательной систем (Gasuhiro, Vincent, 1972). Модель включает в себя три контура управления—дыхательный, сердечный и контур управления периферическим сопротивлением. Полная модель состоит из 120 дифференциальных уравнений, решаемых на ЭВМ. С помощью этих уравнений было проведено моделирование регулярности дыхания при ослаблении силы сокращения сердца или при вводе химических препаратов, действующих на дыхательную систему. Моделируется взаимодействие между механическими подсистемами дыхания (легкими, грудной клеткой, мышцами живота).

 

При нарушении дыхательной функции система анализатора уровня дыхательных сокращений вместе с аварийным генератором времени, анализирующим временной интервал между двумя дыхательными сокращениями и аварийным самоудерживаю-щим реле 2, обеспечивает переброс переключателя ПК 2 на режим запуска от генератора. В комплект эффекторов в схеме входят маска пациента, фазорегулятор дыхания, амплитудный регулятор вдоха и выдоха, дозатор О2 и дозатор СО2. В схеме предусмотрена также возможность подключения наркозного эффектора.

Первый форсированный режим осуществляется от рецепторов СО2 и О2 аналогично схеме искусственного кровообращения по каналу компрессора, а второй—посредством дозатора кислорода этой же группой исполнительно-передающих элементов с добавлением реле времени. Самостоятельным каналом от рецептора CО2 идет линия управления дозатором углекислого газа. Фиксатор аварийного уровня содержания СО2 в крови, управляемый от рецептора СО2, при снижении содержания его в крови ниже допустимой нормы, включает механизм, который подключая в свою очередь дозатор CО2 на определенное время на вход газового смесителя, определяет разовую дозу введения СО2 в газовую смесь.

Некоторые особенности поведения дыхательного центра в условиях самоуправляемого искусственного дыхания изучены в работе В А Полянцева (1969). В опытах автора животное подключалось к аппарату искусственного дыхания, управляемого электрическими импульсами диафрагмального нерва. В системе управляемым параметром была длительность вдоха. На основе исследования автор предлагает следующую схему управления дыхательной функцией:

в составе задающего аппарата функциональной дыхательной системы имеется акцептор действия—аппарат для оценки результата действия, который представляет собой функциональное объединение модели должного результата и модели реально достигн утого результата. Обе модели связаны между собой через сравнивающее устройство. Сигнал рассогласования, возникающий при сравнении модели реального результата с моделью должного результата, служит командой для органов дыхания.

 



2020-02-04 352 Обсуждений (0)
Математические модели регуляции дыхания 0.00 из 5.00 0 оценок









Обсуждение в статье: Математические модели регуляции дыхания

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (352)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)