Мегаобучалка Главная | О нас | Обратная связь


Защита поверхности p-n переходов лаками и эмалями



2020-02-03 306 Обсуждений (0)
Защита поверхности p-n переходов лаками и эмалями 0.00 из 5.00 0 оценок




Защищают p-n-переходы от внешних воздействий тонкими слоями специальных лаков и эмалей, наносимых на место выхода перехода на поверхность. Покрытие плотно сцепляется с поверхностью полупроводника и предотвращает доступ водяных паров, кислорода и др. Достоинством метода является его простота и технологичность.

Однако защита p-n-переходов методом лакировки имеет ряд недостатков. К основным из них следует отнести то, что применяемые в настоящее время лаки не отвечают требованиям, предъявляемым полупроводниковой технологией: недостаточно влагостойки, плохо переносят резкое изменение температуры окружающей среды, растрескиваются или отслаиваются при низких температурах.

Кроме перечисленных недостатков, следует отметить еще один важный недостаток лаков - их способность создавать в приповерхностном слое полупроводника значительные механические напряжения, что объясняется разными коэффициентами термического расширения лака и полупроводникового материала. Таким образом, качество защиты p-n-переходов и свойства лакированных приборов зависят от свойств лаков.

В качестве исходных материалов для лаков используются кремнийорганические смолы, обладающие высокой влагостойкостью и хорошими диэлектрическими свойствами. Однако чистые кремнийорганические лаки имеют ряд недостатков (трескаются при низких температурах, недостаточно сцепляются с полупроводниками, хрупки), которые устраняют введением модифицирующих добавок       и специальных наполнителей. При выборе защитного покрытия (лака или эмали) необходимо исходить из эксплуатационных требований, которые предъявляют к конкретному полупроводниковому прибору.

Важным фактором при защите p-n-переходов лаков является чистота лакируемой поверхности, которая должна быть тщательно протравлена, промыта и высушена. После сушки p-n-переходы переносят в специальных вакуумных эксикаторах в скафандры, в которых носят лак на поверхность кристалла. При нанесении лакового покрытия лак набирают в шприц и осторожно небольшими порциями выдавливают на поверхность полупроводникового кристалла. Для покрытия круглых структур применяют различные полуавтоматические приспособления. Сушат лак в специально выделенных термостатах. Режим сушки зависит от вида лака или эмали, а также типа прибора.

Виды лаков, эмалей и компаундов, применяемых при бескорпусной герметизации:

Лак К-1- довольно густая, почти прозрачная масса вязкостью 80–100 сСт при 20ºС. Плёнка этого кремнийорганического лака после полимеризации при 130–150ºС в течение не менее 4 ч. почти прозрачна и удовлетворительно переносит термоциклирование. Термостойкость около 200 0С. Применяют лак К-1 в основном для защиты сплавных кремниевых p-n-переходов. Наносят лак иглой шприца или тонкой стальной проволокой, окуная ее в тигелек с лаком. При нанесении лак не полностью переходит с иглы (или проволоки) на кристалл, что приводит к утолщению ее кончика, которое удаляют, протирая иглу миткалем, смоченным в спирте.

Лак К-55 – густая прозрачная вязкая масса жёлтоватого цвета, приготавливаемая из полиорганосилоксановой смолы. Защитная плёнка образуется на поверхности полупроводникового кристалла после обработки при 130-1500С в течение 2-3 ч. Удельное объёмное сопротивление пленки при 200С равно 1013 Ом×см, а при 2000С-1012Ом×см. После пребывания пленки в атмосфере с повышенной влажностью (98%) ее объёмное сопротивление снижается до 1011 Ом×см. Термостойкость 150-1800С.

Лак К-57 –прозрачная вязкая масса светло-жёлтого цвета. Время высыхания пленки лака при температуре 2000С равно 1-1,5 часа. Удельное сопротивление при 200С равно 1014 Ом×см, а при 2000С –1012Ом см. Термостойкость 180-2000С. Плёнка обладает высокой влагостойкостью и стойкостью к термоциклическому изменению температуры. Рекомендуемый режим сушки: выдержка 10 часов при 150-1700С.

Лак МК-4У –вязкая масса жёлтого цвета. Связующим веществом является кремнийорганическая смола, модифицированная полиэфирами и эпоксидными смолами, а в качестве наполнителя в смолу вводиться слюда мусковит. Рекомендуемый режим сушки: выдержка 2 ч при 1800С. Удельное объёмное сопротивление при 200С равно 1014 Ом*см. Термостойкость 180-2000С.

Защитный лак ПЭ-518 – терефталевоглицириновой смолы ТФ-4 в циклогексане; прозрачная жидкость от светло до темно-жёлтого цвета. Обладает термостойкостью в диапазоне температур от –60 до +100ºС. Тангенс угла диэлектрических потерь на частоте 106 Гц равен 0,04. Удельное объёмное сопротивление равное в обычных условия 1014 Ом*см, после пребывание во влажной среде атмосфере в течение 48 часов снижается до 1012 Ом*см. Применяется для защиты p-nпереходов от воздействия влаги и воздуха.

Защитный лак КО-938В — раствор кремнийорганической смолы и толуола, модифицированный полиэфиром; жидкость коричневого цвета. Перед употреблением в лак добавляют сиккатив. Содержание сухого остатка равно 50%. Плёнка высыхает при 1500С в течение 30 мин. Адгезионная прочность 8*104 Н/м2. Электрическая прочность при 200С равна 75 кВ/мм, при 2000С — 40 кВ/мм, а после воздействия влажной атмосферы в течение 48 часов —50 кВ/мм. Удельное объёмное электрическое сопротивление при 200С равна 1014 Ом*см, а при 200 С — 1012 Ом*см. Диэлектрическая проницаемость на частоте 106 Гц при 20 С равна 4, а тангенс диэлектрических потерь при тех же условиях – 6*10-4 . Применяется для защиты p-n-переходов полупроводниковых приборов, работающих при температурах до 2000С, а также в качестве адгезионного подслоя для эластичные заливочные компаунды.

Кремнийорганический лак КО-961-п – раствор полиметилвинилфенолсилоксилазана в толуоле; бесцветная или светло-жёлтая жидкость без механических примесей. Содержание сухого остатка не превышает 57-63%. Плёнка высыхает при 200С в течение 60 минут. Электрическая прочность при 200С равна 85 кВ/мм, а при 1500С — 5 кВ/мм. Удельное объёмное сопротивление при 200С равно 1014 Ом*см, а при 1500С — 1012 Ом*см. Покрытия обладают хорошей влагостойкостью и высокими диэлектрическими характеристиками. Тангенс угла диэлектрических потерь – 0,003. Диэлектрическая проницаемость 4,5. Лак легко воспламеняется: нижний температурный предел воспламеняемости насыщенных паров в воздухе 80С, а верхний 360С. Предельно допустимая концентрация паров лака в воздухе составляет 10–20 мг/м3.

Лак сульфон —раствор полисульфонамида на основе изофталеновой кислоты и 3,3-диаминодифенисульфона в диметилацетамиде или диметилформамиде; жидкость жёлтоватого цвета. Содержание сухого остатка не превышает 15%. Удельное объёмное сопротивление при 200С равно 1014 Ом*см, при 2000С — 1012 Ом*см, а при 48-часовом воздействии влаги (95%) и 550С — 1013 Ом*см. Электрическая прочность при 200С равна 50 кВ/мм. Тангенс угла диэлектрических потерь на частоте 103 Гц при температуре 200С равен 0,02, а диэлектрическая постоянная при тех же условиях – 4. Применяется для защиты p-n-переходов полупроводниковых приборов, работающих в интервале температур от –60 до +200 С.

Лак «Пан» — 5%-ный раствор полинитрилоакрилата в диметилформамиде; прозрачная жидкость жёлтого цвета без механических примесей. Вязкость при 200С равна 80–150 сСт. Показатель преломления 1,43–1,44.

Эмаль АС–539 —суспензия пигмента свинцового сурика в растворе эпоксидной смолы, ярко-оранжевого цвета. Разбавляется ксилолом. Вязкость при 200С равна 90–100 сСт. Содержание сухого остатка 25%. Тангенс угла диэлектрических потерь на частоте 1МГц и температуре 200С не превышает 0,025. Плёнка высыхает при 18-230С в течение 1 ч, а при 1300С – 4 ч. Удельное объёмное сопротивление при 200С равно 5*1014 Ом*см, а после пребывания во влажной атмосфере (98%) в течение 48 часов снижается до 1013 Ом*см. Электрическая прочность 20 кВ/мм. Влагонабухаемость плёнки в течение 48 часов при 18-23 С не превышает 1%. Эмаль устойчива к перепаду температур от –60 до + 125 С. Применяется для защиты полупроводниковых приборов и кристаллов с p-n-переходов от внешних воздействий в интервале температур от –60 до +150 С.

Эмаль КО-97— смесь кремнийорганического лака ФМ-34 и смолы БКМ-5 с добавлением пигментов и наполнителей. Вязкость при 200С равна 80-100 сСт. Содержание сухого остатка не превышает 48-58%. Удельное объёмное сопротивление при 200С равно 1014 Ом*см, а при 1700С — 1012 Ом*см, а после пребывания во влажной атмосфере снижается до 1011 Ом*см. Тангенс угла диэлектрических потерь на частоте 1 МГц при 200С равен 0,01, а при 1700С повышается до 0,015. Диэлектрическая проницаемость при тех же условиях соответственно равна 3,5 и 5,5. Влагонабухаемость не превышает 1%. Электрическая прочность 20 кВ/мм. Эмаль устойчива к перепаду температур от –65 до +1500С.

Эмаль ЭП-274 — суспензия пигментов в эпоксидном лаке ЭП-074. Для разбавления применяется смесь, содержащая 30% ацетона, 30% этилцеллозольва и 40% ксилола. Вязкость 80-100 сСт. Время высыхания плёнки при 1500С равно 1 ч. Содержание сухого остатка лежит в пределах от 35 до 45%. Применяется для окраски полупроводниковых приборов, эксплуатирующихся в условиях тропического климата, и выпускаются в двух цветов: серого и черного.

Эмаль РПЭ-401 — смесь кремнийорганического лака ФМ-ЗУ и раствора смолы БМК-5 в соотношении 5:1, в которую добавляют наполнители: 20% рутила, 20% кварца, 30% слюды и 30% талька. Плёнка высыхает при 2000С в течение 5 часов. Удельное объёмное сопротивление при 200С  равно 1014 Ом*см, при 2000С — 1012 Ом*см, а после выдержки во влажной атмосфере (98%) – 2,8*1013 Ом*см.

Эмаль ЭС-50 — кремнийорганическая смола модифицированная телиэфирами и эпоксидными смолами, в которую в качестве наполнителя вводится рутил. Плёнка высыхает при 1800С в течение 2 часов. Удельное объёмное сопротивление при 200С равно 1014 Ом*см, при 2000С — 1012 Ом*см, а после выдержки во влажной атмосфере (98%) – 109 Ом*см.

Эпоксидные смолы.

Эпоксидными смолами называются олигомеры и полимеры, СН—СН содержащие в микромолекуле эпоксидные группы.

Эпоксидные смолы представляют собой группу искусственных смол, получаемых в результате реакции хлорированных глицеринов; с двухатомными или многоатомными фонолами в щелочной среде. Обычно для получения эпоксидных смол используют эпихлоргидрин или дихлоргидрин глицерина с резорцином или дифенилолпроданом. В первом случае получают резорциновые смолы, во втором - диановые, которые как менее токсичные и более дешевые получили наибольшее распространение. Молекулярная масса эпоксидных смол может меняться от нескольких сотен до нескольких тысяч в зависимости от соотношения в них исходных компонентов.

Эпоксидные смолы—это жидкие или низкоплавкие продукты легко растворимые во многих органических растворителях (ацетоне, толуоле, хлорированных углеводородах и др.), нерастворимые в воде и мало растворимые в спиртах. С увеличением молекулярной массы растворимость эпоксидных смол уменьшается. Неотвержденные эпоксидные смолы имеют ограниченное применение

Эпоксидные смолы, полученные взаимодействием эпихлоргидрина или дихлоргидрина с многоатомными фонолами, резорцином, анилином, аминами, гликолями, можно разбить на три основные группы: диэпоксидные, полиэпоксидные и алифатические диэпоксидные

К диэпоксидным относятся смолы на основе дифенилолпропана (ЭД-5, ЭД-6, Э-37), диаминодифенилметана (ЭМДА) фенолфталеина (ЭФФ) и азотсодержащие на основе анилина (ЭА), к полиэпоксидным – смолы на основе эпоксиноволаков (ЭН-5, ЭН-6), полифенолов (ЭТФ) и эпоксициануратные на основе циануровой кислоты (ЭЦ), а к алифатическим диэпоксидным – смолы на основе алифатических аминов (Э-181, ДЭГ-1, ТЭГ-1 МЭГ-1 и ЭЭТ-1).

В полупроводниковом производстве для приготовления различ­ных компаундов для герметизации полупроводниковых приборов и интегральных схем широкое применение находят эпоксидные смолы ЭД-5, ЭД-6, Э-37, ЭЦ и Т-10.

Смола ЭД-5 — вязкая светло-коричневая жидкость, продукт конденсации дифенилолпропана (температура плавления 140— 142°С, содержание свободного фенола не более 4%) с эпихлоргидрином глицерина. Молекулярная масса 360—470. Температур» размягчения 0°С. Время отверждения с гексаметилендиамином при 120°С равно 10 мин. Содержит 20% эпоксидных групп и 2,5% летучих соединений. Мольное соотношение эпихлоргадрина и дифенилолпропана 5:1.

Смола ЭД-6 — прозрачная вязкая жидкость от светло-жёлто­го до светло-коричневого цвета, продукт конденсации дифенилолпропана и эпихлоргидрина в присутствии щелочи. Молекулярная масса 480—600. Температура размягчения 10° С. Содержит от 14 до. 18% эпоксидных групп и 1% летучих соединений. Мольное соот­ношение эпихлоргидрина и дифенилолпропана 2,5:1.

Смола Э-37—сиропообразная жидкость от светло-жёлтого» до темно-коричневого цвета, продукт взаимодействия дифенилол­пропана и эпихлоргидрина. Молекулярная масса 600—800. Тем­пература размягчения 50—70° С. Содержит от 11 до 17% эпоксид­ных групп, 0,5% летучих соединений и 0,005 ионов хлора. Мольное соотношение эпихлоргидрина и дифенилолпропана 1,2:1.

Смола ЭЦ — густой вязкий или твердый хрупкий материал от жёлтого до коричневого цвета, продукт конденсации цикличе­ского тримера циануровой кислоты с эпихлоргидрином. Молеку­лярная масса 400—600. Температура размягчения 70—800С. Со­держит 30% эпоксидных групп,- 1,5% летучих соединений, 5% хло­ра и 0,1% ионов хлора. Смола Т-10—прозрачный вязкий материал от жёлтого до -коричневого цвета, продукт модификации смолы ЭД-6 полиорга носилоксаном Молекулярная масса 300—700. Температура размягчения 60—70.°С. Содержит от 11,5 до 14,5% эпоксидных групп и 97% сухого остатка Применяется для приготовления заливоч­ных составов для изделий электронной техники, работающих в ин­тервале температур от —60 до +220° С. При комнатной темпера туре смола не токсична, а при 220°С огнеопасна Полностью растворяется в ацетоне.

Широкое применение эпоксидных смол обусловлено исключительно ценным комплексом свойств, присущих этой группе I искусственных соединений Основные положительные качества эпоксидных смол заключаются в том, что на их основе получают жидкие и твердые материалы, которые отверждаются как при комнатной, так и при повышенной температуре без образования пузырей .

В качестве отвердителей для эпоксидных смол могут быть использованы алифатические и аромагические амины, пиперидин и ангидриды кислот. Алифатические амины– диэтилентриамин и триэтилентетрамин– характеризуются тем, что при добавлении их в эпоксидную смолу отверждение ее происходит при комнатной температуре. Однако при повышенных температурах наблюдается ухудшение электрофизических свойств пластмасс. Добавление к эпоксидным смолам ароматических аминов– метафенилендиамина, метилендиамина или диаминдифенила– позволяет получать пластмассы, отверждение которых происходит при повышенной температуре (40—60°С), и использовать их при более высоких рабочих температурах, чем смолы с алифатическими аминами. Введение в эпоксидную смолу пиперидина дает температуру отверждения порядка 100°С. Для получения пластмасс, стойких к повышенным температурам, в эпоксидную смолу добавляют ангидриды кислот (например, гидрид метилгексановой кислоты).

Отвердители придают эпоксидной смоле определенные специфические свойства, необходимые для конкретных целей применения. Свойства эпоксидных смол после введения в них отвердителей зависят не только от рода отвердителя, но и от его количества. Избыток отвердителя (как и его недостаток) может отразиться на свойствах конечного продукта. Так избыток аминов, особенно с высокой температурой кипения, приводит к тому, что полученные пластмассы способны вызывать коррозию некоторых металлов (меди, латуни и др.). Количество отвердителя может отразиться также на физико-механических и электрических свойствах отверждённой смолы. Таким образом, в зависимости от вида и количества введенного в смолу отвердителя можно получать термореактивные продукты с высокой химической стойкостью, механической прочностью и стабильностью электрических параметров.

Для отверждения эпоксидных смол широкое применение находят следующие материалы (Отвердители)

Диэтилентриамин (ДЭТА) — жидкость жёлтого цвета Молекулярная масса 103 Температура кипения 206.°С. Содержит 27,2% первичных аминов и 12,8% -вторичных Температура совме­щения лежит в пределах от 20 до 40°С Для отверждения 100 ч смолы необходимо от 8 до 12 ч продукта Время отверждения при 100° С равно 6 ч

Гексаметилендиамин (ГМДА)—жидкость темно-жёлтого цвета Молекулярная масса 116 Температура плавления 42°С, а кипения 200°С. Содержит 24% азота Температура сов­мещения лежит в пределах от 40 до 60° С Для отверждения 100 ч смолы необходимо от 10 до 15 ч продукта Время отверж­дения при 25°С равно 5 сут, при 80°С—10 ч, при 120°С—3 ч

М-Фенилендиамин (МФДА) - жидкость жёлтого цвета Молекулярная масса 108 Температура плавления 60°С, а кипе­ния 280.°С Температура совмещения лежит в пределах от 60 до 90.° С. Для отверждения 100 ч смолы необходимо от 10 до 14 ч продукта Время отверждения при температуре 80°С равно 8 ч, а при 120°С—2 ч

Дициандиамид (ДЦДА) — бесцветная жидкость. Моле­кулярная масса 84 Температура плавления 200.°С. При нагрева­нии разлагается. Содержит 65% азота Температура совмещения лежит в пределах от 150 до 170°С. Для отверждения 100 ч смолы необходимо от 15 до 20 ч продукта Время отверждения при температуре 170°С равно 40 мин

Триэтаноламин (ТЭА) — бесцветная жидкость. Молекулярная масса 149 Температура кипения лежит в диапазоне от 170 до 225°С, а температура совмещения—в диапазоне от 40 до 80.°С. Для отверждения 100 ч смолы необходимо от 15 до 20 ч продукта Время отверждения при температуре от 80 до 100°С равно 6 ч.

Диметиланилин (ДМА) — жидкость коричневого цвета. Молекулярная масса 121 Температура кипения 192°С. Темпера­тура совмещения 60°С. Для отверждения 100 ч смолы необхо­димо от 0,05 до 0,5 ч продукта Время отверждения при темпе­ратуре 20°С равно 8 ч.

Отвердитель Л 18—прозрачная вязкая жидкость от жёлтого до темно-коричневого цвета. Для отверждения 100 ч. смолы, используют от 20 до 80 ч. продукта.

Малеиновый ангидрид (МА) С4НаОз — бесцветные/ игольчатые кристаллы или чешуйки белого цвета, растворимые в воде. Молекулярная масса 98,06. Выпускается марка ЧДА. Температура плавления 52—54°С. Температура совмещения ле­жит в пределах от 55 до 60°С. Для отверждения 100 ч. смолы необходимо 0,85—1 ч. продукта. Время отверждения при 120°С равно 2 ч, а при 150° С—10 ч.

Фталевый ангидрид (ФА) С8Н40з — порошок белого цвета. Молекулярная масса 148,11. Температура начала плавления 130°С. Температура совмещения лежит в пределах от 135 до 145°С. Для отверждения 100 ч. смолы необходимо 3 ч. ангид­рида. Время отверждения при 120—150°С равно нескольким часам.

Метилтепрагидрофталевый ангидрид (МТГФА)—белый кристаллический порошок или белые с кремо­вым оттенком чешуйчатые пластинки. Растворяется в эфире, аце­тоне. Труднее растворяется в спирте. Не растворяется в воде. Молекулярная масса 166,179. Температура плавления 60—65°С. Вязкость при температуре 90°С равна 30 сСт. Температура сов­мещения лежит в пределах от 60 до 80°С. Для отверждения 100 ч. смолы необходимо 4 ч. продукта. Время отверждения при 120°С равно 3 ч, а при 150°С—15 ч. Применяется в качестве отвердителя при горячем отверждении эпоксидных смол или составов на их основе. Выпускается марка Ч с содержанием чистого продукта 99%.                                     

Тетрагидрофталевый ангидрид (ТГФА) — кристаллический порошок белого цвета. Молекулярная масса 152. Температура плавления 98—101°С. Температура совмещения лежит в пределах от 100 до 110° С. Для отверждения 100 ч. смолы необходимо от 2 до 4 ч. продукта. Время отверждения при 120°С равно 2 ч, при 130° С—3 ч, а при 150° С—6 ч.

Отвердитель УП-575 — жидкость от светло - до темно-коричневого цвета, продукт конденсации гексаметилендиамина с циклогексаноном. Показатель преломления лежит в пределах от 1,49 до 1,51. Применяют для приготовления пластмассы с температурой отверждения выше 20° С. Увеличивает жизнеспособность композиций.

Отвердитель АФ-2—вязкая жидкость красно-коричневого цвета, продукт на основе фенолэтилендиамина и формалина.         



2020-02-03 306 Обсуждений (0)
Защита поверхности p-n переходов лаками и эмалями 0.00 из 5.00 0 оценок









Обсуждение в статье: Защита поверхности p-n переходов лаками и эмалями

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (306)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)